Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using a novel scaffold to repair spinal cord injury

21.07.2014

Dr. Ning Yuan, Beijing Jishuitan Hospital, China and his colleagues, developed a novel neural stem cell scaffold that has two layers: the inner loose layer and the outer compact layer.


Through transmission electron microscope, neural stem cells attached to the double-layer collagen membrane with unequal pore sizes and there was no structural change in the double-layer collagen membrane.

Credit: Neural Regeneration Research

The loose layer was infiltrated with a large amount of neural stem cells before it was transplanted in vivo. Thus a plenty of neural stem cells can be provided at the target spinal cord site.

The loose layer was adhered to the injured side and the compact layer was placed against the lateral side. The compact layer has very small holes, so it can prevent ingrowth of adjacent scar tissue.

It can also prevent the loss of inner neural stem cells and the neural growth factors secreted by the differentiated neural stem cells.

Thus a good microenvironment forms to help spinal cord injury repair. Yuan Ning and colleagues found that transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord in rats.

Related results were published in Neural Regeneration Research (Vol. 9, No. 10, 2014).

###

Article: " Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair," by Ning Yuan1, Wei Tian1, Lei Sun2, Runying Yuan2, Jianfeng Tao2, Dafu Chen2 (1 Department of Spine, Beijing Jishuitan Hospital, Beijing, China; 2 Beijing Institute of Orthopedics and Traumatology, Beijing, China) Yuan N, Tian W, Sun L, Yuan RY, Tao JF, Chen DF. Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res. 2014;9(10):1014-1019.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/

Meng Zhao | Eurek Alert!

Further reports about: Regeneration effective factors injury lateral microenvironment prevent rats spinal therapeutic

More articles from Life Sciences:

nachricht Cause of Ageing Remains Elusive
22.10.2014 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht NC State Researchers Advance Genome Editing Technique
22.10.2014 | North Carolina State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

Zoonoses: Global collaboration is more important than ever

07.10.2014 | Event News

 
Latest News

New window on the early Universe

22.10.2014 | Physics and Astronomy

Underwater laser cutting

22.10.2014 | Process Engineering

Cause of Ageing Remains Elusive

22.10.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>