Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Mechanism Identified in Bacteria as Potential Target for Developing New Antibiotics

23.07.2012
Researchers from Florida Atlantic University’s Charles E. Schmidt College of Medicine have identified a unique mechanism in bacteria that has the potential to serve as a target for developing new antibiotics for diseases such as AIDS and soft tissue infections including respiratory and urogenital tracts, which are currently difficult to treat.

The results of these findings were published in an article titled “Novel One-step Mechanism for tRNA 3’-End Maturation by the Exoribonuclease RNase of Mycoplasma gentialium” in the current issue of the Journal of Biological Chemistry.

Co-authors of the article are Ravi K. Alluri, a pre-doctoral student in the department of biomedical science and Dr. Zhongwei Li, Ph.D., associate professor of biomedical science in FAU’s Charles E. Schmidt College of Medicine.

Li and Alluri explain that every organism lives on the same principle that genes direct the production of proteins. This process depends on a set of small RNAs called tRNAs that carry the building blocks of proteins. A tRNA is produced from its gene initially as a precursor that contains extra parts at each end (5’ and 3’ ends) and sometimes in the middle. These extra parts must be removed through RNA processing before tRNA can work during protein production. The processing of tRNA 5’ end has been known for quite some time and work on this enzyme has received a Nobel Prize. Processing of the 3’ end is much more complicated and has only been revealed in some organisms more recently. Organisms that have nucleus in their cells, including humans, appear to process the 3’ end of tRNA in a similar way. A tRNA must be precisely processed before it can carry a building block for proteins.

“Intriguingly, bacteria appear to process the 3’ end of tRNA very differently,” said Alluri. “And we are still trying to reveal the various enzymes called RNases, which remove the 3’ extra parts of tRNA precursors.”

Some of the RNases cut the RNA in the middle, while others trim the RNA from the 3’ end. Most of the bacterial pathways involve multiple RNases to complete tRNA 3’ processing.

“Knowing how tRNA is processed in different types of bacteria is important not only for understanding how bacteria live, but also for developing novel antibiotics that specifically control bacterial pathogens,” said Li.

One such pathogen is the bacterium Mycoplasma genitalium, which is the second smallest known free-living organism that is thought to cause infertility. Alluri and Li’s current work focuses on this bacterium—its genome only contains about 10 percent of the genes found in other common bacteria. Surprisingly, this bacterium contains none of the known RNases for tRNA 3’ processing and hence it has to use a different RNase to do so.

“What we have discovered with Mycoplasma genitalium is that it uses a completely different RNase called RNase R to process the 3’ end of tRNA,” said Alluri. “RNase R can trim the 3’ extra part of a tRNA precursor to make a ‘functional’ tRNA. It is even smart enough to recognize some structural features in the tRNA and tell where the trimming has to stop without harming the mature tRNA.”

The ability of RNase R to completely remove the 3’ extra RNA bases in a single-step trimming reaction represents a novel mechanism of tRNA 3’ processing. Other mycoplasmas generally have small genomes and likely process tRNA in the same way. Using only one enzyme for this complicated task saves genetic resources for mycoplasmas.

“Importantly, blocking the function of RNase R in mycoplasmas can stop protein production and kill the bacteria, making RNase R an excellent target of new antibiotics for treatment of mycoplasma infection,” said Li.

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 29,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida, where its annual economic impact exceeds $6.3 billion. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>