Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncharted Territory: Scientists Sequence the First Carbohydrate Biopolymer

11.10.2011
DNA and protein sequencing have forever transformed science, medicine, and society. Understanding the structure of these complex biomolecules has revolutionized drug development, medical diagnostics, forensic science, and our understanding of evolution and development. But, one major molecule in the biological triumvirate has remained largely uncharted: carbohydrate biopolymers.

Today, for the first time ever, a team of researchers led by Robert Linhardt of Rensselaer Polytechnic Institute has announced in the October 9 Advanced Online Publication edition of the journal Nature Chemical Biology the sequence of a complete complex carbohydrate biopolymer. The surprising discovery provides the scientific and medical communities with an important and fundamental new view of these vital biomolecules, which play a role in everything from cell structure and development to disease pathology and blood clotting.


Rensselaer Polytechnic Institute
Structure of the bikunin. The portion on the left corresponds to the sugar part of the molecule, the sequence of which was determined in the current study. The portion on the right corresponds to the protein part of bikunin.
Nature Chemical Biology

The paper is titled “The proteoglycan bikunin has a defined sequence.”

“Carbohydrate biopolymers, known as glycosaminoglycans, appear to be really important in how cells interact in higher organisms and could explain evolutionary differences and how development is driven. We also know that carbohydrate chains respond to disease, injury, and changes in the environment,” said Linhardt, who is the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer. “In order to understand how and why this all happens, we first need to know their structure. And today, at least for the simplest glycosaminoglycan structure, we can now do this.”

The first glycosaminoglycan sequenced was obtained from bikunin. Bikunin is a proteoglycan, a protein to which a single glycosaminoglycan chain is attached. Unlike less sophisticated carbohydrate biopolymers, such as starch and cellulose, the proteoglycans are decorated with structurally complex carbohydrates that enable them to perform more sophisticated and defined roles in the body. Bikunin, for example, is a natural anti-inflammatory that is used as a drug for the treatment of acute pancreatitis in Japan. It has the simplest chemical structure of any proteoglycan. Linhardt views the discovery of the structure of bikuin as the first step on the ladder to the discovery of the structure of more complex proteoglycans.

“The first genome sequences of DNA were on the simplest organisms such as bacteria. Once the technology was developed it ultimately led to the sequencing of the human genome,” he said. “In our efforts to sequence carbohydrate biopolymers we don’t yet know if the defined structure we observe for this simple protoglycan will hold for much more complex proteoglycans.”

But, looking for structure in more complex proteoglycans will be among the next steps in the research for Linhardt and his team. The search for structure could help put to rest a long-running debate in the scientific community as to whether complex carbohydrate biopolymers require a defined structure to function.

“Despite all that is known about glycan formation, our understanding has not yet been deep enough to infer sequence or even determine if sequence occurs,” Linhardt said. “These findings represent a new way of looking at these complex biomolecules as ordered structures.”

Linhardt’s research into carbohydrate sequencing began 30 years ago. In his previous work, he determined that some order existed in at least a portion of some carbohydrate biopolymers, but it did not represent the entire finished puzzle.

“Previously, we could see a pattern, but we could not see if all the chains were playing the same music. The tools did not yet exist. Now we can recognize it as a symphony.”

To uncover the entire structure, Linhardt and his team, which was led by his doctoral student Mellisa Ly, borrowed a technique from the field of protein research called the proteomics top-down approach. As opposed to the bottom-up approach that first breaks apart a complex biopolymer into pieces and then rebuilds it piece by piece like a jigsaw puzzle, the top-down approach used by Linhardt and colleagues allows the researcher to picture the whole intact puzzle. This can only be accomplished with some of the most sophisticated technology available to the scientific community today, including very high-powered mass spectrometers.

Linhardt used a mass spectrometer located in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS) to make his initial discoveries, and had these results independently confirmed on a separate and higher-level spectrometer at the University of Georgia. Mass spectrometers break down a molecule into separate charged particles or ions. These ions can then be categorized and analyzed based on their mass-to-charge ratio. These ratios then allow for sequencing of the entire molecule.

“This was truly the convergence of really sophisticated spectroscopy and its application to biology,” Linhardt said. “We were fortunate to have a lot of time to play with the instrument at CBIS to understand its capabilities.”

Beyond the technology it also took faith and determination. According to Linhardt, “It takes a student that is willing to try something even when the odds are pretty low. If it doesn’t work, you make incremental progress. If it does work, you can make a great discovery. But, from the beginning you need to be a believer that it is worth taking the chance because it takes a lot of hard work in the lab.”

And the odds weren’t in Linhardt’s favor. Despite being the most simple of proteoglycans, there were still 290 billion different possible sequences for the molecule.

“The first sample we looked at, we got the structure,” Linhardt said. “In the end we did 15 chains and they all came back playing the same exact symphony.”

The research is funded by the National Institutes of Health.

Linhardt and Ly were joined in the research by Tatiana Laremore of Rensselaer; Franklin Leach and Jonathan Amster of the University of Georgia; and Toshihiko Toida of Chiba University in Japan.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

Further reports about: Bikunin Biopolymer CBIS Carbohydrate DNA genome sequence mass spectrometer territory

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>