Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UIC study identifies a key molecular switch for telomere extension by telomerase

Researchers at the University of Illinois at Chicago College of Medicine describe for the first time a key target of DNA damage checkpoint enzymes that must be chemically modified to enable stable maintenance of chromosome ends by telomerase, an enzyme thought to play a key role in cancer and aging.

Their findings are reported online in Nature Structural and Molecular Biology.

Telomeres are the natural ends of chromosomes, consisting of specialized DNA-and-protein structures that protect chromosome ends and ensure faithful duplication of chromosomes in actively dividing cells. An essential player in telomere maintenance is an enzyme complex called telomerase. Without telomerase, telomeres become progressively shorter each time the cell divides.

If telomeres become too short, chromosome ends will be recognized as broken, prompting DNA-damage checkpoint proteins to halt cell division and DNA repair proteins to fuse or rearrange the chromosome ends. Telomere dysfunction has been linked to tumor formation and premature aging in humans.

The UIC study, led by Toru Nakamura, associate professor of biochemistry and molecular genetics, focused on understanding how two DNA-damage checkpoint enzymes called ATM and ATR contribute to the regulation of telomerase.

"Our current study found that ATM and ATR help to switch on the telomere complex by chemically modifying a specific target protein bound to telomeric DNA, which then attracts telomerase, much like honey bees are attracted if flowers open and show bright colors," Nakamura said.

The study was done in fission yeast cells, a model organism that utilizes very similar protein complexes as human cells do to maintain telomeres. Previous discoveries in fission yeast have provided key information that helped identify several key factors required in maintenance of human telomeres.

Nakamura thinks that a similar ATM/ATR-dependent molecular switch may exist in human cells to regulate telomere maintenance. However, certain details of the protective complex regulation may be different, he noted.

Because deregulation of telomere maintenance mechanisms is a key event in tumor formation, understanding how cellular components collaborate to generate functional telomeres may be important to finding ways to prevent cancer, Nakamura said.

The study was supported by grants from the National Institutes of Health and the Federal Work Study Program. Bettina Moser, UIC research assistant professor in biochemistry and molecular genetics, was first author of the study. Graduate student Ya-Ting Chang and undergraduate student Jorgena Kosti also contributed to the study.

For more information about UIC, visit

Jeanne Galatzer-Levy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>