Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turning the Spotlight on Drug-resistant Tumors

A newly developed group of fluorescent probes highlights cancer cells resistant to anticancer drugs

Molecular probes that can illuminate cancer cells are often invaluable tools in the fight against the disease. The latest addition to this group is a family of fluorescent probes that can highlight a particularly pernicious kind of tumor cell: those resistant to anticancer drugs.

Figure 1: Fluorescent probes light up living cancer cells to indicate the presence of glutathione transferase (GST), an enzyme associated with drug resistance. Copyright : 2011 American Chemical Society

The international team of scientists behind the research, led by Hiroshi Abe at the RIKEN Advanced Science Institute in Wako, Japan, and Ralf Morgenstern at the Karolinska Institute in Stockholm, Sweden, say that their discovery could help expedite research efforts to defeat these drug-resistant tumors1.

The probes work by targeting a family of enzymes called glutathione transferases (GSTs). These enzymes play a variety of roles in healthy cells, including protecting the cell from oxidative stress by labeling harmful molecules with a glutathione tag. This tag marks the molecule for rapid export out of the cell. But in certain cancer cells, GSTs are produced in elevated amounts, where they are able to tag many anticancer drugs in the same way. As a result, the drug is pumped away before it can kill the cell. Finding ways to block GSTs is therefore an active area of cancer research since a probe that can reveal the level of GST activity inside a living cell could prove a very useful tool in the search.

The team’s fluorescent probes exploit the GSTs well-known molecular mode of action. The GST enzymes target molecules—such as anti-cancer drugs—by attacking an electron-poor point in its structure and attaching the glutathione label to it. Using a series of known fluorescent molecules, Abe, Morgenstern and colleagues added to them an electron-poor arylsulfonyl group ripe for attack by a GST enzyme. The arylsulfonyl group also has the effect of suppressing the fluorescence; but, as GST attacks, it breaks the probe in two which releases the fluorophore and instantly illuminates the cell.

The researchers demonstrated that they could use their probes to quantitatively measure very low levels of GST in cell extracts. Using a fluorophore known as cresyl violet, they were also able to image GST activity inside living cells (Fig. 1). According to Abe, the researchers already have plans to improve the performance of their probes, making them even more sensitive.

“By fine-tuning the chemical reactivity of the protecting arylsulfonyl group, we will improve the signal to background noise ratio for improved imaging,” he says. “By re-designing the fluorescent compound, we can also achieve GST subtype selectivity,” he adds.

The corresponding author for this highlight is based at the Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>