Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning the Spotlight on Drug-resistant Tumors

13.12.2011
A newly developed group of fluorescent probes highlights cancer cells resistant to anticancer drugs

Molecular probes that can illuminate cancer cells are often invaluable tools in the fight against the disease. The latest addition to this group is a family of fluorescent probes that can highlight a particularly pernicious kind of tumor cell: those resistant to anticancer drugs.


Figure 1: Fluorescent probes light up living cancer cells to indicate the presence of glutathione transferase (GST), an enzyme associated with drug resistance. Copyright : 2011 American Chemical Society

The international team of scientists behind the research, led by Hiroshi Abe at the RIKEN Advanced Science Institute in Wako, Japan, and Ralf Morgenstern at the Karolinska Institute in Stockholm, Sweden, say that their discovery could help expedite research efforts to defeat these drug-resistant tumors1.

The probes work by targeting a family of enzymes called glutathione transferases (GSTs). These enzymes play a variety of roles in healthy cells, including protecting the cell from oxidative stress by labeling harmful molecules with a glutathione tag. This tag marks the molecule for rapid export out of the cell. But in certain cancer cells, GSTs are produced in elevated amounts, where they are able to tag many anticancer drugs in the same way. As a result, the drug is pumped away before it can kill the cell. Finding ways to block GSTs is therefore an active area of cancer research since a probe that can reveal the level of GST activity inside a living cell could prove a very useful tool in the search.

The team’s fluorescent probes exploit the GSTs well-known molecular mode of action. The GST enzymes target molecules—such as anti-cancer drugs—by attacking an electron-poor point in its structure and attaching the glutathione label to it. Using a series of known fluorescent molecules, Abe, Morgenstern and colleagues added to them an electron-poor arylsulfonyl group ripe for attack by a GST enzyme. The arylsulfonyl group also has the effect of suppressing the fluorescence; but, as GST attacks, it breaks the probe in two which releases the fluorophore and instantly illuminates the cell.

The researchers demonstrated that they could use their probes to quantitatively measure very low levels of GST in cell extracts. Using a fluorophore known as cresyl violet, they were also able to image GST activity inside living cells (Fig. 1). According to Abe, the researchers already have plans to improve the performance of their probes, making them even more sensitive.

“By fine-tuning the chemical reactivity of the protecting arylsulfonyl group, we will improve the signal to background noise ratio for improved imaging,” he says. “By re-designing the fluorescent compound, we can also achieve GST subtype selectivity,” he adds.

The corresponding author for this highlight is based at the Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>