Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Transparency: Optically transparent water oxidation catalyst made from copper nanowires

25.10.2013
Hydrogen is used as an energy source in fuel cells and can be produced from water by using sunlight and a suitable catalyst.

In the journal Angewandte Chemie, American researchers have now introduced a new electrocatalyst consisting of a conductive network of core-shell nanowires that is just as efficient as conventional metal oxide films on indium tin oxide (ITO) and a great deal more transparent and robust.



Nickel and cobalt oxides are attractive anode materials for the oxidation of water because they are readily available and demonstrate high catalytic activity. For use in photoelectric synthesis cells, in which chemical conversions are driven by light, the oxides are typically electrodeposited onto ITO substrates.

ITO is used because of its high transmittance and low sheet resistance. However, the high potentials required for the oxidation of water cause the conductivity of ITO surfaces to fall. In addition, indium is expensive and the production of ITO films is costly. Another disadvantage is that the catalytic oxide layers reduce the light transmittance and thus the light captured by the photovoltaic components.

A team led by Benjamin J. Wiley at Duke University in Durham has now developed a new approach to solve these problems. Their trick is to replace the ITO electrode with a conductive network of copper nanowires. Copper is a common element and is orders of magnitude cheaper than indium.

In addition, the nanowires can be quickly, easily, and inexpensively deposited onto a glass surface from a liquid. Afterward, the researchers electrolytically deposit nickel or cobalt onto the nanowires. The resulting network of core-shell nanowires is as efficient as metal oxide films of similar composition for the electrocatalytic oxidation of water, but is several times more transparent.

The nanowire film can also be deposited onto a flexible sheet of polyethylene terephthalate (PET) plastic instead of glass.

Unlike ITO-based electrocatalysts on PET substrates, which suffer from significant loss of conductivity after repeated bending, the film made of nanowires isn’t really affected. The scientists are optimistic that their approach will open up new possibilities for the design of more efficient, mechanically robust, and affordable light-harvesting systems for the production of solar fuels.

About the Author
Dr. Benjamin J. Wiley is an Assistant Professor of Chemistry at Duke University. His research is focused on how to control the assembly of atoms on the nanoscale to create new materials with properties specifically designed to solve problems in electronics and renewable energy. He is a recent recipient of the CAREER award from the National Science Foundation.

Author: Benjamin J. Wiley, Duke University, Durham (USA), http://people.duke.edu/~bjw24/contact.html

Title: Optically Transparent Water Oxidation Catalysts Based on Copper Nanowires
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201306585

Benjamin J. Wiley | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>