Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transcription factors: function follows form

Spatial structure determines transcription factor activity

Clay can be used in various forms for a range of objects such as cups, plates or bricks. Similarly, proteins can transform their structure and thus adapt their function and activity.

DNA-induced structural changes (parts that change are colored red) in the DNA binding domain of the glucocorticoid receptor (left) and the structural changes (red) that occur when an extra amino acid is inserted in the DNA binding domain of the glucocorticoid receptor as a consequence of alternative splicing (right).

© MPI f. Molecular Genetics/Meijsing

Researchers at the Max Planck Institute for Molecular Genetics in Berlin have analysed proteins for such modifications that control gene activity, so-called transcription factors. The researchers thereby discovered that DNA changes the form and the activity of the glucocorticoid receptor, and also ascertained how various domains in the molecule communicate with one another.

Furthermore, the way in which the protein domains are connected also changes as a result of the integration of individual amino acids in the protein chain. Different genes are therefore transcribed to varying degrees.

Transcription factors are responsible for transcribing the correct genes and therefore for producing the right quantity of proteins. They bind to specific sections of DNA near genes, such as promoters for example. However, the transcription factors do not function simply as an on/off switch but rather like a volume control, which allows gene expression to be precisely controlled.

The glucocorticoid receptor is a transcription factor, which, for example, is activated by the hormone cortisol during fasting, resulting in glucose production in the liver. Because of its anti-inflammatory effect, it also plays an important role in the treatment of illnesses caused by an overactive immune system, such as allergies, autoimmune diseases and asthma. Various signals determine its activity, two of which are: firstly, the DNA to which the glucocorticoid receptor binds in order to regulate the gene. The second signal is the integration of additional amino acids in the protein.

The Berlin-based Max Planck researchers have studied how these two signals have an effect, which genes are regulated by the glucocorticoid receptor and how they affect the strength of the regulation. “Our findings show that DNA is not simply a passive strip of Velcro which can be bound by proteins. Instead, DNA changes the shape of the proteins and thereby the communication between various protein domains,” explains Sebastiaan H. Meijsing from the Max Planck Institute for Molecular Genetics. In this way, the glucocorticoid receptor can adapt its activity to individual genes.

Furthermore, different variants of the glucocorticoid receptor exist. They occur when the original RNA chain, produced when the glucocorticoid receptor gene is transcribed, is subsequently modified again. During this process, known as alternative splicing, additional modules can be added to the amino acid chain in the protein. The modification changes the way in which different sections of the glucocorticoid receptor are connected to one another. As a result, different genes can be transcribed to varying degrees. “Transcription factors are like chameleons in the way they can change their appearance. It allows them to respond to different signals and regulate genes with particular precision,” says Meijsing.


Dr. Sebastian Meijsing
Max Planck Institute for Molecular Genetics, Berlin
Phone: +49 30 8413-1176
Email: meijsing@­
Dr. Patricia Marquardt
Max Planck Institute for Molecular Genetics, Berlin
Phone: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@­
Original publication
Morgane Thomas-Chollier, Lisa C. Watson, Samantha B. Cooper, Miles A. Pufall, Jennifer S. Liu, Katja Borzym, Martin Vingron, Keith R. Yamamoto, Sebastiaan H. Meijsing
A naturally occuring insertion of a single amino acid rewires trancriptional regulation by glucocorticoid receptor isoforms

PNAS, 14 October 2013

Dr. Sebastian Meijsing | Max-Planck-Institute
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>