Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcription factors: function follows form

17.10.2013
Spatial structure determines transcription factor activity

Clay can be used in various forms for a range of objects such as cups, plates or bricks. Similarly, proteins can transform their structure and thus adapt their function and activity.


DNA-induced structural changes (parts that change are colored red) in the DNA binding domain of the glucocorticoid receptor (left) and the structural changes (red) that occur when an extra amino acid is inserted in the DNA binding domain of the glucocorticoid receptor as a consequence of alternative splicing (right).

© MPI f. Molecular Genetics/Meijsing

Researchers at the Max Planck Institute for Molecular Genetics in Berlin have analysed proteins for such modifications that control gene activity, so-called transcription factors. The researchers thereby discovered that DNA changes the form and the activity of the glucocorticoid receptor, and also ascertained how various domains in the molecule communicate with one another.

Furthermore, the way in which the protein domains are connected also changes as a result of the integration of individual amino acids in the protein chain. Different genes are therefore transcribed to varying degrees.

Transcription factors are responsible for transcribing the correct genes and therefore for producing the right quantity of proteins. They bind to specific sections of DNA near genes, such as promoters for example. However, the transcription factors do not function simply as an on/off switch but rather like a volume control, which allows gene expression to be precisely controlled.

The glucocorticoid receptor is a transcription factor, which, for example, is activated by the hormone cortisol during fasting, resulting in glucose production in the liver. Because of its anti-inflammatory effect, it also plays an important role in the treatment of illnesses caused by an overactive immune system, such as allergies, autoimmune diseases and asthma. Various signals determine its activity, two of which are: firstly, the DNA to which the glucocorticoid receptor binds in order to regulate the gene. The second signal is the integration of additional amino acids in the protein.

The Berlin-based Max Planck researchers have studied how these two signals have an effect, which genes are regulated by the glucocorticoid receptor and how they affect the strength of the regulation. “Our findings show that DNA is not simply a passive strip of Velcro which can be bound by proteins. Instead, DNA changes the shape of the proteins and thereby the communication between various protein domains,” explains Sebastiaan H. Meijsing from the Max Planck Institute for Molecular Genetics. In this way, the glucocorticoid receptor can adapt its activity to individual genes.

Furthermore, different variants of the glucocorticoid receptor exist. They occur when the original RNA chain, produced when the glucocorticoid receptor gene is transcribed, is subsequently modified again. During this process, known as alternative splicing, additional modules can be added to the amino acid chain in the protein. The modification changes the way in which different sections of the glucocorticoid receptor are connected to one another. As a result, different genes can be transcribed to varying degrees. “Transcription factors are like chameleons in the way they can change their appearance. It allows them to respond to different signals and regulate genes with particular precision,” says Meijsing.

Contact

Dr. Sebastian Meijsing
Max Planck Institute for Molecular Genetics, Berlin
Phone: +49 30 8413-1176
Email: meijsing@­molgen.mpg.de
Dr. Patricia Marquardt
Max Planck Institute for Molecular Genetics, Berlin
Phone: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@­molgen.mpg.de
Original publication
Morgane Thomas-Chollier, Lisa C. Watson, Samantha B. Cooper, Miles A. Pufall, Jennifer S. Liu, Katja Borzym, Martin Vingron, Keith R. Yamamoto, Sebastiaan H. Meijsing
A naturally occuring insertion of a single amino acid rewires trancriptional regulation by glucocorticoid receptor isoforms

PNAS, 14 October 2013

Dr. Sebastian Meijsing | Max-Planck-Institute
Further information:
http://www.mpg.de/7573582/transcriptions-factor_glucocorticoid-receptor?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>