Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For first time, scientists show an HIV vaccine impacts the genetic makeup of the virus

02.03.2011
Results suggest new vaccine strategies to debilitate viruses by tapping into this response

An AIDS vaccine tested in people, but found to be ineffective, influenced the genetic makeup of the virus that slipped past. The findings suggest new ideas for developing HIV vaccines.

The results were published Feb. 27 in Nature Medicine.

This is the first evidence that vaccine-induced cellular immune responses against HIV-1 infection exert selective pressure on the virus. "Selective pressure" refers to environmental demands that favor certain genetic traits over others.

The senior author of the multi-institutional study is Dr. James I. Mullins, University of Washington (UW) professor of microbiology. The research team analyzed the genome sequences in HIV-1 isolated from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. Mullins and the other principal researchers who carried out this study were not involved in the STEP trial.

The STEP trial was a double-blind, Phase 2B test-of-concept of a Merck HIV-1 subtype B vaccine. The vaccine, MRKAd5, was designed to make the body produce infection-fighting white blood cells, commonly called killer T-cells, that could recognize and target specific parts of HIV-1 known as Gag, Pol and Nef.

The STEP trial was conducted at 34 North American, Caribbean, South American and Australian locations where the HIV-1 subtype B was the predominant virus in the local HIV-infected populations. The trial enrolled 3,000 participants.

Preliminary tests indicated the vaccine was encouraging the appearance of the desired virus-attacking cells. More than 75 percent of vaccinated participants produced HIV-1 specific T cells.

Nevertheless, this response to the vaccine did not predict protection. The trial failed. Immunizations were halted, Mullins recalled, after the first interim analysis indicated that the vaccine neither prevented HIV-1 infection nor reduced the load of virus in the body.

"Even though the T-cell responses were not sufficient to prevent infection," Mullins said, "we were interested in whether the vaccine-elicited T-cells had any impact on those strains of HIV-1 that established infections in the study subjects."

The research team tested for a "sieve effect," which, Mullins explained, occurs when a vaccine successfully blocks some strains of virus and not others. The researchers wanted to know, What are the genetic characteristics of those breakthrough viruses that slipped past the immunization barrier erected by the MRKAd5 vaccine?

The research team isolated strains of HIV-1 from both vaccine and placebo recipients in the study, and compared the genetic sequences of the strains. This would help researchers to determine if any changes in the "founder virus" – the virus first detected in the infection – might have helped it evade the vaccine-induced immune response and take hold in the vaccinated individuals.

The researchers identified potential T-cell targets in the protein-producing regions of the founder virus genetic sequences and compared these to the virus protein-targets of the vaccine – Gag, Pol and Nef. The researchers found that the distances for these viral genetic sequences were greater for the viruses taken from the vaccinated individuals, compared to those from the placebo recipients.

The most significant virus genetic site distinguishing vaccine from placebo recipients was in the region known as Gag-84, which was encompassed by several of the viral segments targeted by the vaccine.

Moreover, the researchers said that the extended divergence between the viruses from the vaccinated and the placebo groups was confined only to the sequences for the proteins targeted by the vaccine components (Gag, Pol and Nef) and was not found in other HIV-1 protein sequences. The influence of the vaccine on the virus genotype, Mullins said, was subtle.

Mullins and his team, as well as their collaborators from the STEP trials studies, are doing similar studies of the genetic impact of the Thailand vaccine RV144 on the AIDS virus. The RV144 vaccine was the first to show some probable effectiveness, but its efficacy was not great enough to put it to more general use.

The researchers added that their findings on breakthrough viruses suggest that new vaccines should be designed to put selective pressure on the virus in a controlled manner.

Such a vaccine, Mullins said, should select for genetic mutations in regions of the virus known to be associated with viral control and should avoid selecting for strains that can either escape the immune defense or act as decoys to fool the immune system.

The researchers propose a goal for new designs of vaccines aimed at inducing killer T-cell responses: corner the virus into assuming forms that debilitate it. This would make the infecting virus fitness-impaired – unable to adapt, reproduce in great numbers and cause disease progression.

"Despite the sad results of the STEP trial," Mullins said, "it has provided clues to ways for science to go forward in the search for an HIV vaccine.

The research was supported by a grant from the U.S. Public Health Service.

In addition to Mullins, others on the research team were: Morgane Rolland, Sodsai Tovanabutra, Allan C. decamp, Nicole Frahm, Peter B. Gilbert, Eric Sanders-Buell, Laura Heath, Craig A. Margaret, Meera Bose, Andrea Bradfield, Annemarie O'Sullivan, Jacqueline Crossler, Teresa Jones, Marty Nau, Kim Wong, Hong Zhoa, Dana N. Raugi, Stephanie Sorensen, Julia Stoddard, Brandon S. Maust, Wenjie Deng, John Hural, Sheri Dubey, Nelson L. Michael, John Shiver, Lawrence Corey, Fusheng Li, Stephen G. Self., Jerome Kim, Susan Buchbinder, Danilo R. Casimiro, Michael N. Robertson, Ann Duerr, M. Juliana McElrath, and Francine E. McCutchan.

The researchers are from these institutions: Department of Microbiology, University of Washington; U.S. Military Research Program, Rockville, Md.; Vaccine and Infectious Disease Institute, Fred Hutchison Cancer Research Center; Merck Research Laboratories, West Point, Pa.; San Francisco Department of Health, and the Bill & Melinda Gates Foundation.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>