Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rubber hand that you feel is yours

26.09.2014

What does the brain do when it receives information from they eye that conflicts with sensory evidence from the hand? Neurologists from Würzburg have investigated this question by means of a classical experiment. The result: The brain takes the easy route.

It seems rather weird: You see an artificial hand lying on a table in front of you knowing exactly it isn't your real hand. Nevertheless, you feel as though it actually belongs to your body. Your brain delivers the illusion that the artificial hand is a part of your body – even though you know for a fact that it is not.

The rubber hand illusion

This is the term used in literature to refer to the experiment. In 1998, Matthew Botvinick and Jonathan Cohen, two psychiatrists from the University of Pittsburgh, carried out the experiment for the first time, causing quite a stir with their results.

Usually, the experiment is conducted as follows: Participants place their right hand on a table. The scientists hide the hand from view and place a realistically looking rubber hand next to it. They then use a brush to simultaneously stroke the (hidden) real hand and the (visible) artificial hand. After a short time, most participants have the illusion that the rubber hand is a part of their body.

Publication in the Journal of Cognitive Neuroscience

To find out what is happening in the participants' brains and which parts of the brain are involved in generating the illusion, scientists of the University of Würzburg teamed up with their colleagues in Leipzig and London. Their work will soon be published in the Journal of Cognitive Neuroscience; the online version is already available.

"We studied how the brain processes and resolves conflicting multisensory evidence," says Dr. Daniel Zeller, lead author of the new study and neurologist at the Department of Neurology and at the polyclinic of the University of Würzburg. Then of course the brain is facing a contradiction: receiving tactile stimulation from the real hand while seeing the brushstrokes being applied to the dummy hand, it tries to reconcile these two sensory perceptions. The scientists were mainly interested in which regions of the cerebral cortex generate the wrong impression and how they do this.

Three different experimental settings

The rubber hand experiment saw participants being exposed to three different scenarios: The first scenario was similar to the original experimental setting with the participants' own hand hidden and a dummy hand placed in a comparable position, applying simultaneous brushstrokes. In the second scenario, the artificial hand was flipped 180° with an otherwise identical setting. In this case, the palm of the dummy hand was facing upward with the palm of the real hand facing downward. Here, too, two brushes were used. Setting three did not involve the artificial hand at all. In this experiment, only the participants' real hand was stroked with the brush without the illusionary perception of the rubber hand.

The researchers used an electroencephalogram (EEG) to record the participants' brainwaves during the experiments to find out which areas showed increased activity. This allowed them to draw conclusions as to how the human brain processes conflicting multisensory information.

The predictive coding model

"Our results are compatible with the so-called 'predictive coding' concept of multisensory integration," Zeller says. What does that mean? Simply put, it answers the question of how the brain reconciles different sensory information, visual and tactile for example, based on experiences and expectations. Perceptions that occur synchronously are preferably perceived as one single event by the brain.

"With regard to the rubber hand illusion, the brain might arrive at this conclusion: The visible hand is made of rubber and is touched in the same rhythm as my one hand. Even though plausible, this explanation is very unlikely," the neurologist explains. The competing theory in contrast says: "I am feeling the brushstrokes on the visible hand – therefore it is my own hand." This theory is much simpler, but it disagrees with the perceived arm position.

The brain changes its attention allocation

The predictive coding approach could reconcile these conflicting theories as follows: The brain readjusts its sensory precision control thereby varying its attention allocation. Reducing the somatosensory input (i.e. the perceived arm position) in this way resolves the contradiction between the information transmitted by the eye and that of the arm position.

The EEG signals recorded from the participants backed this theory: When participants said they felt the rubber hand illusion, the EEG showed characteristic patterns. These patterns can be interpreted so that the brain actively suppresses distracting somatosensory information when confronted with two conflicting theories.

Sensory Processing and the Rubber Hand Illusion—An Evoked Potentials Study. Daniel Zeller, Vladimir Litvak, Karl J. Friston, and Joseph Classen. Journal of Cognitive Neuroscience X:Y, pp. 1–10. doi:10.1162/jocn_a_00705

Contact

Dr. Daniel Zeller, Department of Neurology and Polyclinic, phone: +49 931 201-23766, Zeller_D@ukw.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>