Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The company you keep

13.02.2015

La Jolla Institute scientists reveal dual role for key T cell factor

When fighting chronic viral infections or cancers, a key division of the immune system, known as CD8 T cells, sometimes loses its ability to effectively fight foreign invaders. Overcoming so-called T cell exhaustion is crucial to treating persistent infections but the underlying molecular mechanisms remain poorly understood.


NFAT shifts the equilibrium between T cell activation and exhaustion by binding to a different subset of regulatory regions within the genome.

Credit: Courtesy of Martinez et al./Immunity 2015

Now, a team of researchers at the La Jolla Institute for Allergy and Immunology report that the shift is masterminded in part by NFAT, short for Nuclear Factor of Activated T cells, and best known for its crucial role in getting CD8 T cells battle-ready. The findings from the lab of professors Patrick Hogan and Anjana Rao, Ph.D, published in the Feb. 17, 2015, issue of the journal Immunity, lay the groundwork for novel treatments to restore immune function.

"Understanding the molecular mechanism that leads to CD8 T cell exhaustion brings us a step closer to developing strategies to induce optimal T cell responses that can successfully clear infections and kill tumor cells," explains postdoctoral researcher and co-lead author Renata M. Pereira, Ph.D. "Conversely, it may allow us to interfere with autoimmune responses that paradoxically depend on the same protein".

CD8 T cells are a subset of lymphocytes charged with killing cancer cells and cells that are infected with viruses or compromised in other ways. In previous work, the Rao and Hogan teams collaboratively pinpointed NFAT as the molecular hub that orchestrates T cell activation. When the T cell receptor on the surface of CD8 T cells recognizes a foreign protein, it kicks off a signaling cascade that culminates in the activation of NFAT and its partner AP-1. Together, the pair binds to regulatory regions in the genome and initiates a genetic program that activates T cells and readies them to fight cancer and viral infections.

In the face of chronic viral infections such as hepatitis and HIV as well as certain types of cancers, CD8 T cells become less effective over time until they ignore calls to arm. In addition, exhausted CD8 T cells start to express inhibitory cell surface receptors that receive and feed inhibitory signals into the cell establishing a negative feedback loop.

While a range of cellular markers of exhaustion, such as PD-1 and TIM3, have been characterized and are even the target of cancer immunotherapy drugs, the molecular details of how CD8 T cells switch gears were unclear.

Using NFAT as a starting point, Pereira and Gustavo J. Martinez, Ph.D., formerly a joint postdoc in the Rao and Hogan labs and now the Genomics Core Director at the Scripps Research Institute in Jupiter, Florida, established that interfering with NFAT's ability to partner with AP-1 tips the balance toward T cell exhaustion and and impairs the immune system's response to tumors and infections.

To gain a clearer picture of NFAT's role, the La Jolla Institute researchers embarked on a genome-wide survey of NFAT-binding sites in the genes occupied in activated versus exhausted CD8 T cells. The bioinformatics expertise of Professor Harri Lähdesmäki, Ph.D. and his graduate student Tarmo Äijö in the Department of Information and Computer Science at the Aalto University School of Science in Aalto, Finland was essential to this effort, said Rao.

Rao added that, "NFAT shifts the equilibrium between the activated state and exhaustion by binding to a different subset of regulatory regions within the genome." A closer look at the transcriptome--all the parts of the genome that are actively expressed at a given time--confirmed that NFAT, when acting on its own, induces a second transcriptional program that has many of the characteristic features of CD8 T cell exhaustion.

"Depending on the availability of AP-1, NFAT tips the scale toward T cell activation or exhaustion," says Martinez. In the presence of AP-1, NFAT induces T cell activation. Without it, NFAT initiates a negative regulatory program that activates genes encoding inhibitory cell surfaces markers and blunts signals received by the T cell receptor. It also interferes with CD8 T cells ability to produce cytokines, chemical messengers that recruit other arms of the immune system.

###

The work was funded by the National Institutes of Health (CA42471, AI40127, AI84167, AI095634, the European Union (FP7 grant EC-FP7-SYBILLA-201106), the Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research, the German Research Foundation (SFB 1054 TP A03), the Jane Coffins Childs Memorial Fund, the Pew Latin American Fellows Program in the Biomedical Sciences and the Finnish Doctoral Programme in Computational Sciences FICS.

Full citation: "The transcription factor NFAT regulates exhaustion of activated CD8+ T cells" Gustavo J. Martinez, Renata M. Pereira, Tarmo Äijö, Edward Y. Kim, Francesco Marangoni, Matthew E. Pipkin, Susan Togher, Vigo Heissmeyer, Yi Chen Zhang, Shane Crotty, Edward D. Lamperti, K. Mark Ansel, Thorsten R. Mempel, Harri Lähdesmäki, Patrick G. Hogan, and Anjana Rao. Immunity, 2015. (DOI: http://dx.doi.org/10.1016/j.immuni.2015.01.006)

URL: http://dx.doi.org/10.1016/j.immuni.2015.01.006

About La Jolla Institute for Allergy and Immunology

The La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

Media Contact

Gina Kirchweger
gina@lji.org
858-752-6557

 @liairesearch

http://www.liai.org 

Gina Kirchweger | EurekAlert!

Further reports about: AP-1 Allergy CD8 NFAT T cell activation T cells cell activation immune system infections viral infections

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>