Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The company you keep

13.02.2015

La Jolla Institute scientists reveal dual role for key T cell factor

When fighting chronic viral infections or cancers, a key division of the immune system, known as CD8 T cells, sometimes loses its ability to effectively fight foreign invaders. Overcoming so-called T cell exhaustion is crucial to treating persistent infections but the underlying molecular mechanisms remain poorly understood.


NFAT shifts the equilibrium between T cell activation and exhaustion by binding to a different subset of regulatory regions within the genome.

Credit: Courtesy of Martinez et al./Immunity 2015

Now, a team of researchers at the La Jolla Institute for Allergy and Immunology report that the shift is masterminded in part by NFAT, short for Nuclear Factor of Activated T cells, and best known for its crucial role in getting CD8 T cells battle-ready. The findings from the lab of professors Patrick Hogan and Anjana Rao, Ph.D, published in the Feb. 17, 2015, issue of the journal Immunity, lay the groundwork for novel treatments to restore immune function.

"Understanding the molecular mechanism that leads to CD8 T cell exhaustion brings us a step closer to developing strategies to induce optimal T cell responses that can successfully clear infections and kill tumor cells," explains postdoctoral researcher and co-lead author Renata M. Pereira, Ph.D. "Conversely, it may allow us to interfere with autoimmune responses that paradoxically depend on the same protein".

CD8 T cells are a subset of lymphocytes charged with killing cancer cells and cells that are infected with viruses or compromised in other ways. In previous work, the Rao and Hogan teams collaboratively pinpointed NFAT as the molecular hub that orchestrates T cell activation. When the T cell receptor on the surface of CD8 T cells recognizes a foreign protein, it kicks off a signaling cascade that culminates in the activation of NFAT and its partner AP-1. Together, the pair binds to regulatory regions in the genome and initiates a genetic program that activates T cells and readies them to fight cancer and viral infections.

In the face of chronic viral infections such as hepatitis and HIV as well as certain types of cancers, CD8 T cells become less effective over time until they ignore calls to arm. In addition, exhausted CD8 T cells start to express inhibitory cell surface receptors that receive and feed inhibitory signals into the cell establishing a negative feedback loop.

While a range of cellular markers of exhaustion, such as PD-1 and TIM3, have been characterized and are even the target of cancer immunotherapy drugs, the molecular details of how CD8 T cells switch gears were unclear.

Using NFAT as a starting point, Pereira and Gustavo J. Martinez, Ph.D., formerly a joint postdoc in the Rao and Hogan labs and now the Genomics Core Director at the Scripps Research Institute in Jupiter, Florida, established that interfering with NFAT's ability to partner with AP-1 tips the balance toward T cell exhaustion and and impairs the immune system's response to tumors and infections.

To gain a clearer picture of NFAT's role, the La Jolla Institute researchers embarked on a genome-wide survey of NFAT-binding sites in the genes occupied in activated versus exhausted CD8 T cells. The bioinformatics expertise of Professor Harri Lähdesmäki, Ph.D. and his graduate student Tarmo Äijö in the Department of Information and Computer Science at the Aalto University School of Science in Aalto, Finland was essential to this effort, said Rao.

Rao added that, "NFAT shifts the equilibrium between the activated state and exhaustion by binding to a different subset of regulatory regions within the genome." A closer look at the transcriptome--all the parts of the genome that are actively expressed at a given time--confirmed that NFAT, when acting on its own, induces a second transcriptional program that has many of the characteristic features of CD8 T cell exhaustion.

"Depending on the availability of AP-1, NFAT tips the scale toward T cell activation or exhaustion," says Martinez. In the presence of AP-1, NFAT induces T cell activation. Without it, NFAT initiates a negative regulatory program that activates genes encoding inhibitory cell surfaces markers and blunts signals received by the T cell receptor. It also interferes with CD8 T cells ability to produce cytokines, chemical messengers that recruit other arms of the immune system.

###

The work was funded by the National Institutes of Health (CA42471, AI40127, AI84167, AI095634, the European Union (FP7 grant EC-FP7-SYBILLA-201106), the Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research, the German Research Foundation (SFB 1054 TP A03), the Jane Coffins Childs Memorial Fund, the Pew Latin American Fellows Program in the Biomedical Sciences and the Finnish Doctoral Programme in Computational Sciences FICS.

Full citation: "The transcription factor NFAT regulates exhaustion of activated CD8+ T cells" Gustavo J. Martinez, Renata M. Pereira, Tarmo Äijö, Edward Y. Kim, Francesco Marangoni, Matthew E. Pipkin, Susan Togher, Vigo Heissmeyer, Yi Chen Zhang, Shane Crotty, Edward D. Lamperti, K. Mark Ansel, Thorsten R. Mempel, Harri Lähdesmäki, Patrick G. Hogan, and Anjana Rao. Immunity, 2015. (DOI: http://dx.doi.org/10.1016/j.immuni.2015.01.006)

URL: http://dx.doi.org/10.1016/j.immuni.2015.01.006

About La Jolla Institute for Allergy and Immunology

The La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

Media Contact

Gina Kirchweger
gina@lji.org
858-752-6557

 @liairesearch

http://www.liai.org 

Gina Kirchweger | EurekAlert!

Further reports about: AP-1 Allergy CD8 NFAT T cell activation T cells cell activation immune system infections viral infections

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>