Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cartography of the nucleus

11.06.2018

Creating 3D maps of DNA within the innermost parts of a cell

Nestled deep in each of your cells is what seems like a magic trick: Six feet of DNA is packaged into a tiny space 50 times smaller than the width of a human hair. Like a long, thin string of genetic spaghetti, this DNA blueprint for your whole body is folded, twisted, and compacted to fit into the nucleus of each cell.


A 3D model of the nucleus made with SPRITE: DNA regions in the "inactive hub" on chromosomes 15 (orange) and chromosome 18 (green) coming together around a large nuclear body in the nucleus (blue) called the nucleolus (red).

Credit: Guttman laboratory / Cell

Now, Caltech researchers have shown how cells organize the seemingly immense genome in a clever manner so that they can conveniently find and access important genes. Understanding the delicate three-dimensional organization of the genome is crucial, particularly because alterations in DNA structure have been linked to certain diseases such as cancer and early aging. Mapping and pinpointing alterations in nuclear structure may help in finding solutions to these diseases.

The work was done in the laboratory of Mitchell Guttman, assistant professor of biology and Heritage Medical Research Institute investigator. A paper describing the research appears in the June 7 online issue of the journal Cell.

... more about:
»DNA »cellular machinery »chromosomes »genes »proteins

Though the vast majority of cells in every human body contain identical genomes, different types of cells are able to have diverse functions because genes can be expressed at varying levels--in other words, they can be turned on or off. For example, when a stem cell is developing into a neuron, a flurry of activity happens in the nucleus to dial up and down levels of gene expression. These levels would be different, for example, if the stem cell was turning into a muscle cell or if the cell were making the decision to self-destruct.

In addition to the genome, the nucleus also contains structures called nuclear bodies, which are like miniature factories in the nucleus that contain a high concentration of cellular machinery all working to accomplish similar tasks, such as turning on specific sets of genes or modifying RNA molecules to produce proteins in the cell. This cellular machinery needs to be able to efficiently search through six feet of DNA--approximately 20,000 total genes, in mammals--in order to precisely find and control its targets. This is made possible because DNA is organized into three-dimensional structures that make certain genes more or less accessible.

In the new research, Guttman and his team describe a method to three-dimensionally map out how DNA is organized within the space of the nucleus and how regions of chromosomes interact with each other and with nuclear bodies. The technique, dubbed SPRITE (Split-Pool Recognition of Interactions by Tag Extension), allows researchers to examine clusters (or "complexes") of molecules within the nucleus to see which molecules are interacting with each other and where they are located.

In the technique, each complex in the nucleus is given a different molecular barcode, with all of the molecules within a single complex receiving the same barcode. Then, the complexes can be broken open and the molecules analyzed. This way, scientists can determine if two or more molecules were interacting, depending on whether they had the same barcode.

Led by graduate student Sofia Quinodoz, the team used SPRITE to discover that genes across different chromosomes (large folded structures of DNA) cluster together around specific nuclear bodies. Specifically, inactive genes--those that are turned off--across different chromosomes cluster together around a particular nuclear body called the nucleolus, which contains repressive proteins on DNA that keep genes turned off. Conversely, active genes grouped about another kind of nuclear body called the nuclear speckle, contain molecules that help turn the genes on and make them into proteins.

"With SPRITE, we were able to see thousands of molecules--DNAs and RNAs--coming together at various 'hubs' around the nucleus in single cells," says Quinodoz, the study's first author. "Previously, researchers theorized that each chromosome is kind of on its own, occupying its own 'territory' in the nucleus. But now we see that multiple genes on different chromosomes are clustering together around these bodies of cellular machinery. We think these 'hubs' may help the cell keep DNA that are all turned on or turned off neatly organized in different parts of the nucleus to allow cellular machinery to easily access specific genes within the nucleus."

###

The paper is titled "Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus." In addition to Quinodoz and Guttman, Caltech co-authors are postdoctoral scholar Noah Ollikainen; research associates Ali Palla, Elizabeth Detmar, and Vickie Trinh; former visiting student Jan Marten Schmidt; computational biologist Mason Lai (BS '09); former staff scientist Alexander Shishkin; graduate students Prashant Bhat and Yodai Takei; former research associate Erik Aznauryan; senior research scientist Amy Chow; and research professor Long Cai. Additional co-authors are Barbara Tabak, Patrick McDonel, and Manuel Garber of the University of Massachusetts, Pamela Russell of the Colorado School of Public Health, Christine Cheng of Boston University, and Marko Jovanovic of Columbia University. Funding was provided by the Howard Hughes Medical Institute Gilliam Fellowships for Advanced Study, the National Science Foundation, the National Institute of General Medical Sciences, the UCLA-Caltech Medical Scientist Training Program, the National Institutes of Health, the National Human Genome Research Institute, the New York Stem Cell Foundation, the Sontag Foundation, and Caltech.

Media Contact

Lori Dajose
ldajose@caltech.edu
626-658-0109

 @caltech

http://www.caltech.edu 

Lori Dajose | EurekAlert!
Further information:
http://www.caltech.edu/news/cartography-nucleus-82442
http://dx.doi.org/10.1016/j.cell.2018.05.024

Further reports about: DNA cellular machinery chromosomes genes proteins

More articles from Life Sciences:

nachricht Two bilateral French-Austrian research projects start at IST Austria
11.06.2018 | Institute of Science and Technology Austria

nachricht Ten thousand bursting genes
11.06.2018 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Ten thousand bursting genes

11.06.2018 | Life Sciences

Silicon provides means to control quantum bits for faster algorithms

11.06.2018 | Information Technology

Ice on the spin liquid

11.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>