Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Techniques used to infer pathways of protein evolution found unreliable

11.10.2012
Experimental studies of ancestral visual pigments and their mutational variants cast doubt on simplifying assumptions widely used in evolutionary studies of proteins
A key assumption that biologists have relied on widely over the past quarter-century in studying the evolution of protein molecules is "highly questionable," according to an article published in the November issue of BioScience.

The article, by Shozo Yokoyama, a vision researcher at Emory University, summarizes experimental work that involved creating and measuring the properties of dozens of reconstructed ancestral versions of visual pigments found in the eyes of vertebrates, including humans, as well as deliberately altered variants. Yokoyama concludes that the studies he assessed "cast serious doubt" on the "fundamental principle of molecular adaptation," the bedrock of thousands of published papers based on reconstructions of evolutionary changes in a wide range of proteins. The statistical tools used by such studies are "not reliable," he writes.

In attempting to understand how proteins and their properties might have changed over time, biologists have typically made simplifying assumptions. One is that a known change at a particular spot in a protein would affect the properties of ancestral and modern forms of proteins in similar ways. That simplification makes it relatively easy for computers to infer the likely evolutionary paths that led to the forms of the proteins found in modern organisms—for example, the visual pigments found in deep-sea fishes (which live with no ultraviolet light) and the different pigments found in shallow-water fishes.

Yokoyama tested the assumptions by making the hypothesized ancestral pigments and variants of them that might have been produced by mutation, then accurately measuring their properties. The results were disturbing: the properties of related versions of proteins would often change in very different ways when the same mutation was introduced into each. Consequently, standard computational and statistical methods would rarely have identified the experimentally supported evolutionary pathway. Yokoyama expresses the hope that other researchers will start to make and test the properties of reconstructed ancestral proteins to evaluate hypotheses about their evolution, rather than relying on computational approaches.

BioScience, published monthly, is the journal of the American Institute of Biological Sciences (AIBS; www.aibs.org). BioScience is a forum for integrating the life sciences that publishes commentary and peer-reviewed articles. The journal has been published since 1964. AIBS is a meta-level organization for professional scientific societies and organizations that are involved with biology. It represents nearly 160 member societies and organizations. The article by Yokoyama can be accessed ahead of print at www.aibs.org/bioscience-press-releases/ until early November.

The complete list of peer-reviewed articles in the November, 2012 issue of BioScience is as follows. These are published online ahead of print from 11 October.

Synthesis of Experimental Molecular Biology and Evolutionary Biology: An Example from the World of Vision.

Shozo Yokoyama

Sentinels of Ecological Processes: The Case of the Northern Flying Squirrel.
Winston P. Smith
What Is Conservation Science?
Peter Kareiva and Michelle Marvier
A State-Based National Network for Effective Wildlife Conservation.
Vicky J. Meretsky, Lynn A. Maguire, Frank W. Davis, David M. Stoms, J. Michael Scott, Dennis Figg, Dale D. Goble, Brad Griffith, Scott E. Henke, Jacqueline Vaughn, and Steven L. Yaffee
A Global System for Monitoring Ecosystem Service Change.
Heather Tallis, Hal Mooney, Sandy Andelman, Patricia Balvanera, Wolfgang Cramer, Danny Karp, Stephen Polasky, Belinda Reyers, Taylor Ricketts, Steve Running, Kirsten Thonicke, Britta Tietjen, and Ariane Walz

Tim Beardsley | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>