Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Techniques used to infer pathways of protein evolution found unreliable

11.10.2012
Experimental studies of ancestral visual pigments and their mutational variants cast doubt on simplifying assumptions widely used in evolutionary studies of proteins
A key assumption that biologists have relied on widely over the past quarter-century in studying the evolution of protein molecules is "highly questionable," according to an article published in the November issue of BioScience.

The article, by Shozo Yokoyama, a vision researcher at Emory University, summarizes experimental work that involved creating and measuring the properties of dozens of reconstructed ancestral versions of visual pigments found in the eyes of vertebrates, including humans, as well as deliberately altered variants. Yokoyama concludes that the studies he assessed "cast serious doubt" on the "fundamental principle of molecular adaptation," the bedrock of thousands of published papers based on reconstructions of evolutionary changes in a wide range of proteins. The statistical tools used by such studies are "not reliable," he writes.

In attempting to understand how proteins and their properties might have changed over time, biologists have typically made simplifying assumptions. One is that a known change at a particular spot in a protein would affect the properties of ancestral and modern forms of proteins in similar ways. That simplification makes it relatively easy for computers to infer the likely evolutionary paths that led to the forms of the proteins found in modern organisms—for example, the visual pigments found in deep-sea fishes (which live with no ultraviolet light) and the different pigments found in shallow-water fishes.

Yokoyama tested the assumptions by making the hypothesized ancestral pigments and variants of them that might have been produced by mutation, then accurately measuring their properties. The results were disturbing: the properties of related versions of proteins would often change in very different ways when the same mutation was introduced into each. Consequently, standard computational and statistical methods would rarely have identified the experimentally supported evolutionary pathway. Yokoyama expresses the hope that other researchers will start to make and test the properties of reconstructed ancestral proteins to evaluate hypotheses about their evolution, rather than relying on computational approaches.

BioScience, published monthly, is the journal of the American Institute of Biological Sciences (AIBS; www.aibs.org). BioScience is a forum for integrating the life sciences that publishes commentary and peer-reviewed articles. The journal has been published since 1964. AIBS is a meta-level organization for professional scientific societies and organizations that are involved with biology. It represents nearly 160 member societies and organizations. The article by Yokoyama can be accessed ahead of print at www.aibs.org/bioscience-press-releases/ until early November.

The complete list of peer-reviewed articles in the November, 2012 issue of BioScience is as follows. These are published online ahead of print from 11 October.

Synthesis of Experimental Molecular Biology and Evolutionary Biology: An Example from the World of Vision.

Shozo Yokoyama

Sentinels of Ecological Processes: The Case of the Northern Flying Squirrel.
Winston P. Smith
What Is Conservation Science?
Peter Kareiva and Michelle Marvier
A State-Based National Network for Effective Wildlife Conservation.
Vicky J. Meretsky, Lynn A. Maguire, Frank W. Davis, David M. Stoms, J. Michael Scott, Dennis Figg, Dale D. Goble, Brad Griffith, Scott E. Henke, Jacqueline Vaughn, and Steven L. Yaffee
A Global System for Monitoring Ecosystem Service Change.
Heather Tallis, Hal Mooney, Sandy Andelman, Patricia Balvanera, Wolfgang Cramer, Danny Karp, Stephen Polasky, Belinda Reyers, Taylor Ricketts, Steve Running, Kirsten Thonicke, Britta Tietjen, and Ariane Walz

Tim Beardsley | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>