Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technique switches “triple-negative” breast cancer cells to more treatable, hormone-receptor positive cells

02.11.2011
Within many hormone-receptor positive breast cancers lives a subpopulation of receptor-negative cells – knock down the hormone-receptor positive cells with anti-estrogen drugs and you may inadvertently promote tumor takeover by more dangerous, receptor-negative cells.

A study recently published in the Proceedings of the National Academy of Sciences describes how to switch these receptor-negative cells back to a state that can be targeted by existing hormone therapies.

“We found that these estrogen-receptor negative cells express high levels of a Notch receptor protein,” says James Haughian, PhD, investigator at the University of Colorado Cancer Center and instructor at the University of Colorado School of Medicine. “And when you blockade this Notch activity, you end up with a pure population of hormone-receptor positive cells.”

Very basically, within a breast cancer, you frequently have different kinds of cells living together – some that have estrogen receptors and thus need to “grab” estrogen in order to survive, grow and replicate. And, Haughian finds, some with similar Notch receptors that need to “grab” Notch proteins in order to survive, grow and replicate. On cells without estrogen receptors but with Notch receptors, they blockade this Notch pathway and the cell again becomes dependent on estrogen – and thus likely treatable with anti-estrogen therapies.

“It’s rare to get something that works so fantastically well as this,” Haughian says.

Whether this switch from hormone-insensitive to hormone-sensitive is due to basic evolution – killing the triple-negative cells leaves more resources for the growth of hormone-receptor positive cells – or whether inhibiting Notch signaling, in fact, causes triple-negative cells to grow hormone receptors is still under investigation.

Whatever the precise mechanism, drugs that inhibit this Notch activity are already in clinical trials for breast cancer. However, Kathryn Horwitz, PhD, investigator at the CU Cancer Center and Distinguished Professor of Endocrinology at the CU School of Medicine theorizes that, “Monotherapy with a Notch inhibitor might not be enough on its own, but may convert the cancer into a hormone-therapy treatable state.”

This finding that Notch inhibition converts a triple-negative cancer subpopulation to a hormone-receptor positive population implies the potential usefulness of combination therapy – perhaps a Notch inhibitor to make all the cancer’s cells hormone-sensitive, followed by an anti-estrogen to treat them.

“Theorizing that and proving it is another matter,” Horwitz says. “But if a clinician came knocking on our door, we’d say hey, let’s try it.”

Research funded by the National Institutes of Health (NIH), the Breast Cancer Research Foundation and the Avon Foundation for Women

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river Medicine Notch Signaling estrogen receptor

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>