Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technique switches “triple-negative” breast cancer cells to more treatable, hormone-receptor positive cells

02.11.2011
Within many hormone-receptor positive breast cancers lives a subpopulation of receptor-negative cells – knock down the hormone-receptor positive cells with anti-estrogen drugs and you may inadvertently promote tumor takeover by more dangerous, receptor-negative cells.

A study recently published in the Proceedings of the National Academy of Sciences describes how to switch these receptor-negative cells back to a state that can be targeted by existing hormone therapies.

“We found that these estrogen-receptor negative cells express high levels of a Notch receptor protein,” says James Haughian, PhD, investigator at the University of Colorado Cancer Center and instructor at the University of Colorado School of Medicine. “And when you blockade this Notch activity, you end up with a pure population of hormone-receptor positive cells.”

Very basically, within a breast cancer, you frequently have different kinds of cells living together – some that have estrogen receptors and thus need to “grab” estrogen in order to survive, grow and replicate. And, Haughian finds, some with similar Notch receptors that need to “grab” Notch proteins in order to survive, grow and replicate. On cells without estrogen receptors but with Notch receptors, they blockade this Notch pathway and the cell again becomes dependent on estrogen – and thus likely treatable with anti-estrogen therapies.

“It’s rare to get something that works so fantastically well as this,” Haughian says.

Whether this switch from hormone-insensitive to hormone-sensitive is due to basic evolution – killing the triple-negative cells leaves more resources for the growth of hormone-receptor positive cells – or whether inhibiting Notch signaling, in fact, causes triple-negative cells to grow hormone receptors is still under investigation.

Whatever the precise mechanism, drugs that inhibit this Notch activity are already in clinical trials for breast cancer. However, Kathryn Horwitz, PhD, investigator at the CU Cancer Center and Distinguished Professor of Endocrinology at the CU School of Medicine theorizes that, “Monotherapy with a Notch inhibitor might not be enough on its own, but may convert the cancer into a hormone-therapy treatable state.”

This finding that Notch inhibition converts a triple-negative cancer subpopulation to a hormone-receptor positive population implies the potential usefulness of combination therapy – perhaps a Notch inhibitor to make all the cancer’s cells hormone-sensitive, followed by an anti-estrogen to treat them.

“Theorizing that and proving it is another matter,” Horwitz says. “But if a clinician came knocking on our door, we’d say hey, let’s try it.”

Research funded by the National Institutes of Health (NIH), the Breast Cancer Research Foundation and the Avon Foundation for Women

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river Medicine Notch Signaling estrogen receptor

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>