Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique allows study of protein folding, dynamics in living cells

01.03.2010
A new technique to study protein dynamics in living cells has been created by a team of University of Illinois scientists, and evidence yielded from the new method indicates that an in vivo environment strongly modulates a protein's stability and folding rate, according to research accepted for publication in the journal Nature Methods and posted on the journal's Web site Feb. 28.

Martin Gruebele, the James R. Eiszner Professor of Chemistry at Illinois and corresponding author of the paper, says the method that he and his team of co-researchers engineered marks the first time anyone has been able to follow the real-time folding and unfolding of proteins outside of a test tube.

"This is the first experiment that allows us to observe the dynamics of a protein folding in a live cell," Gruebele said. "Now we have the capability of looking at how fast biological processes occur as a function of time."

To study the biomolecular dynamics inside of a single living cell, Gruebele and his team pioneered a hybrid method they've dubbed "Fast Relaxation Imaging," a technique that combines fluorescence microscopy and fast temperature jumps.

"It's a tool that combines two worlds: chemical dynamics, and the ability to study reactions as they occur; and biological environments, where cell biologists observe how reactions occur in cells," Gruebele said.

To achieve both a fast upward and downward temperature jump, programmed laser pulses are used to pre-heat, spike, plateau, cool and then finally stabilize the temperature in the cell and its aqueous medium at the final value. An inverted fluorescence microscope is used to observe and record what happens inside the cell, all of which takes place in the span of a few milliseconds.

The cells are usually heated to between 96 and 100 degrees Fahrenheit.

"It's like we give them a little bit of a fever," Gruebele said.

Gruebele says that although temperature jumps have been used for some time to study the kinetics of chemical reactions in vitro, that method is limited by what he calls "homogenous kinetics," or an inability to see the dynamics in different areas of the cell.

"We haven't really been able to study dynamics, to see if a chemical reaction like protein folding varies inside of a living cell," he said. "With temperature jumps and pressure jumps, you can do those experiments very quickly, but you don't get any imagery that lets you see if proteins fold faster in one region and slower in another," Gruebele said.

On the other hand, fluorescence microscopy allows researchers to see inside of cells, but it precludes them from studying cell dynamics and kinetics.

"With fluorescence microscopy, we're able to take images of cells and see inside them, but we can't observe how anything rapidly changes or adapts with time, so you can't look at any but the slowest dynamics. This experiment puts those two aspects together," he said.

Since biomolecular dynamics are predominantly studied in vitro, with the results extrapolated to explain how the same processes would function in a living cell, Gruebele says the new technique has yielded some interesting data that could change standard thinking in the field.

"If you perform experiments only in an artificial environment such as a test tube and not in a living cell, you only get one answer," Gruebele said. "It's a reproducible environment; therefore, it always gives you the same answer. If you do it in a cell, we find we get very different answers in different parts of the cell."

According to Gruebele, the proteins studied in vivo using the new technique were more stable, their thermal denaturation was more gradual and their folding kinetics were slower than the same proteins studied in vitro.

Gruebele said that in living cells, "You really expect a lot of heterogeneity, that there would be a lot of differences among different areas of the cell, that there might be areas of the cell where the protein might be very stable, and other places where it's very unstable. There might be places where it folds very quickly, and other places where it folds very slowly."

The reason for this heterogeneity is that proteins have to thread their way through whatever channel happens to be available, Gruebele said. And, as opposed to the expansive environment of a test tube, there's a lot of cellular furniture for proteins to bump into in living cells.

"You have a very simple, very homogenous environment when you study proteins in vitro," he said. "In a living cell, 30 to 40 percent of the contents are solids of some kind. There are big ones, like ribosomes, and walls, like cell membranes, all the way down to very small parts like other proteins or sugars. So there's really a huge distribution of all these different sizes that a protein has to wend its way around that may hinder it from freely expanding and contracting, as it would do when it unfolds and refolds in an artificial environment.

"So it's the environment, and not just an intrinsic property of the protein, that causes all these variations that we observed."

In addition to revealing the inner working of cell dynamics, Gruebele, who is also a researcher at the Beckman Institute, says Fast Relaxation Imaging will have practical, human-scale applications as well.

"With this new technique, we now have the capability of looking at how fast biological processes occur as a function of time, including potentially interesting disease processes, especially with neurological disorders and diseases that cause dementia such as Alzheimer's, Huntington's, Creutzfeldt–Jakob disease," he said.

There's also the potential to induce disease processes, and study the dynamics of those processes in a live animal study.

"We can take these proteins that cause these diseases, actually put them into the kind of cells where they cause these diseases, give them a heat shock and actually see if they bind differently to the membranes, if they cause the membrane to puncture," Gruebele said. "We'll be able to follow these events in real time and give researchers an idea of if this is a possible pathway through which disease could occur."

Gruebele's co-authors of the paper are Simon Ebbinghaus, a post-doctoral research associate; Apratim Dhar, a U. of I. student; and J. Douglas McDonald, a professor of chemistry.

Funding was provided by The National Science Foundation and the James R. Eiszner Chair.

Editor's notes: To reach Martin Gruebele, call 217-333-1624; e-mail: mgruebel@illinois.edu.

To view or subscribe to the RSS feed for Science News at Illinois, go to http://webtools.uiuc.edu/rssManager/608/rss.xml.

Phil Ciciora | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>