Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers how a cancer-causing bacterium spurs cell death

02.11.2011
Researchers report they have figured out how the cancer-causing bacterium Helicobacter pylori attacks a cell’s energy infrastructure, sparking a series of events in the cell that ultimately lead it to self-destruct.

H. pylori are the only bacteria known to survive in the human stomach.

Infection with the bacterium is associated with an increased risk of gastric cancer, the second-leading cause of cancer-related deaths worldwide.

“More than half the world’s population is currently infected with H. pylori,” said University of Illinois microbiology professor Steven Blanke, who led the study. “And we’ve known for a long time that the host doesn’t respond appropriately to clear the infection from the stomach, allowing the bacterium to persist as a risk factor for cancer.”

The new study, in Proceedings of the National Academy of Sciences, is the first to show how a bacterial toxin can disrupt a cell’s mitochondria – its energy-generation and distribution system – to disable the cell and spur apoptosis (programmed cell death).

“One of the hallmarks of long-term infection with H. pylori is an increase in apoptotic cells,” Blanke said. “This may contribute to the development of cancer in several ways.” Apoptosis can damage the epithelial cells that line the stomach, he said, “and chronic damage to any tissue is a risk factor for cancer.” An increase in apoptotic cells may also spur the hyper-proliferation of stem cells in an attempt to repair the damaged tissue, increasing the chance of mutations that can lead to cancer.

Previous studies had shown that VacA, a protein toxin produced by H. pylori, induces host cell death, Blanke said, “but the mechanism had been unknown.”

The VacA protein was known to target the mitochondrion, an organelle that produces chemical energy where it is needed in the cell. In healthy cells, mitochondria fuse to form elaborate energy-generating networks in response to cellular needs. Mitochondria are important to a lot of other cellular processes; most important to Blanke and his colleagues, they regulate cell death.

While studying how a cell responds to infection, the researchers noticed that H. pylori induced mitochondrial fission. Instead of fusing and forming filamentous networks to respond to the cell’s energy needs, the mitochondria were breaking into smaller, unconnected organelles.

“Fusion and fission are two dynamic and opposing processes that must be balanced to regulate mitochondrial structure and function,” Blanke said. But infection with H. pylori – or with purified VacA toxin alone – was pushing the mitochondria toward fission.

The researchers found that VacA recruited a host protein, Drp1, to the mitochondria. This protein plays a central role in mitochondrial fission. Further experiments showed that Drp1-mediated fission of the mitochondrial networks was linked to activation of a cell-death-inducing factor, called Bax.

“The link between VacA action at the mitochondria and Bax-dependent cell death had previously been unknown,” Blanke said.

This study provides a first direct link between a bacterial toxin-mediated disruption of mitochondrial dynamics and host cell death, Blanke said. It also opens a new avenue of investigation of other diseases linked to impaired mitochondrial function, he said.

“Hundreds of human diseases and disorders are associated with mitochondrial dysfunction, ranging from cancers to degenerative diseases such as Alzheimer’s disease and Parkinson’s,” Blanke said. “As yet, no one has methodically investigated a potential link between bacterial infections and mitochondrial diseases, despite the fact that several dozen pathogenic bacteria and viruses are known to directly target mitochondria.”

Blanke and his colleagues are beginning to investigate that link.

“To us, finding that a pathogen can disrupt mitochondria in a manner that has striking similarities to what has been observed in known mitochondrial diseases is potentially very exciting,” said Blanke, who also is an affiliate of the Institute for Genomic Biology at Illinois.

The research team included Illinois doctoral student Prashant Jain and Professor Zhao-Qing Luo, of Purdue University.
Editor’s notes: To reach Steven Blanke,
email sblanke@illinois.edu.

The paper, “Helicobacter pylori vacuolating cytotoxin A (VacA) Engages the Mitochondrial Fission Machinery to Induce Host Cell Death,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>