Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tea leaves identified using neural networks

01.10.2010
A team of chemists from the University of Seville (US) has managed to distinguish between different kinds of tea leaves on the basis of their mineral content and by using artificial neural networks. This technique makes it possible to differentiate between the five main varieties of tea – white, green black, Oolong and red tea.

"This method makes it possible to clearly differentiate between the five types of tea – something that is often not easy to do by eye alone – by using analysis of the leaves' mineral content and then mathematically processing these data", José Marcos Jurado, co-author of the study and a researcher at the US, tells SINC.

The technique makes it possible to distinguish between the five main tea varieties (white, green, black, Oolong and red) using chemometrics, a branch of chemistry that uses mathematics to extract useful information from data obtained in the laboratory.

Firstly, the concentrations of the chemical elements in the leaves were determined using 'inductively-coupled plasma atomic emission spectroscopy', which showed the most abundant elements to be calcium, magnesium, potassium, aluminium, phosphorus and sulphur.

Other essential elements were also identified in the tea, such as copper, manganese, iron and zinc, according to this study, which has been published online in the journal Food Chemistry.

Once the mineral content of the leaves was established, probabilistic neural networks were used to find out which type of tea a sample belonged to. These networks are "mathematical algorithms that mimic the behaviour of the neurons in the human nervous system in order to process the information", the expert explains.

This generates a model that receives an input signal (chemical data) and produces an output one, making it possible to predict the type of tea in the sample with a probability of 97%.

The second most commonly drunk beverage in the world

Tea is the second most commonly drunk beverage in the world after water, and this has been the case since 2700BCE. This infusion is prepared from the plant Camellia sinensis. The five tea varieties result from the different kinds of preparation process that the leaves are subjected to after being harvested.

White tea is a non-fermented tea made up of new buds and leaves that are protected from sunlight as they grow in order to limit chlorophyll production. Green tea is another unfermented tea, but it is made by using older green leaves.

The Oolong and black tea varieties are made by fermenting the leaves, although in the first case these are completely fermented, while black tea undergoes an intermediate controlled fermentation process of between 10% and 70%.

Red, or Pu-erh, tea is a fermented product obtained from another variety of the plant, Camellia sinensis var assamica, which is cultivated in the Chinese region of Yunnan.

The health benefits of the leaves of this plant are well known. Aside from acting as an antioxidant, diuretic and relieving hypertension, it is also an important source of essential elements such as aluminium, copper, zinc, calcium and potassium.

References:

James S. McKenzie, José Marcos Jurado y Fernando de Pablos. "Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks". Food Chemistry 123 (3): 859�, 2010. Doi: 10.1016/j.foodchem.2010.05.007.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>