Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tea leaves identified using neural networks

01.10.2010
A team of chemists from the University of Seville (US) has managed to distinguish between different kinds of tea leaves on the basis of their mineral content and by using artificial neural networks. This technique makes it possible to differentiate between the five main varieties of tea – white, green black, Oolong and red tea.

"This method makes it possible to clearly differentiate between the five types of tea – something that is often not easy to do by eye alone – by using analysis of the leaves' mineral content and then mathematically processing these data", José Marcos Jurado, co-author of the study and a researcher at the US, tells SINC.

The technique makes it possible to distinguish between the five main tea varieties (white, green, black, Oolong and red) using chemometrics, a branch of chemistry that uses mathematics to extract useful information from data obtained in the laboratory.

Firstly, the concentrations of the chemical elements in the leaves were determined using 'inductively-coupled plasma atomic emission spectroscopy', which showed the most abundant elements to be calcium, magnesium, potassium, aluminium, phosphorus and sulphur.

Other essential elements were also identified in the tea, such as copper, manganese, iron and zinc, according to this study, which has been published online in the journal Food Chemistry.

Once the mineral content of the leaves was established, probabilistic neural networks were used to find out which type of tea a sample belonged to. These networks are "mathematical algorithms that mimic the behaviour of the neurons in the human nervous system in order to process the information", the expert explains.

This generates a model that receives an input signal (chemical data) and produces an output one, making it possible to predict the type of tea in the sample with a probability of 97%.

The second most commonly drunk beverage in the world

Tea is the second most commonly drunk beverage in the world after water, and this has been the case since 2700BCE. This infusion is prepared from the plant Camellia sinensis. The five tea varieties result from the different kinds of preparation process that the leaves are subjected to after being harvested.

White tea is a non-fermented tea made up of new buds and leaves that are protected from sunlight as they grow in order to limit chlorophyll production. Green tea is another unfermented tea, but it is made by using older green leaves.

The Oolong and black tea varieties are made by fermenting the leaves, although in the first case these are completely fermented, while black tea undergoes an intermediate controlled fermentation process of between 10% and 70%.

Red, or Pu-erh, tea is a fermented product obtained from another variety of the plant, Camellia sinensis var assamica, which is cultivated in the Chinese region of Yunnan.

The health benefits of the leaves of this plant are well known. Aside from acting as an antioxidant, diuretic and relieving hypertension, it is also an important source of essential elements such as aluminium, copper, zinc, calcium and potassium.

References:

James S. McKenzie, José Marcos Jurado y Fernando de Pablos. "Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks". Food Chemistry 123 (3): 859�, 2010. Doi: 10.1016/j.foodchem.2010.05.007.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>