Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tea leaves identified using neural networks

01.10.2010
A team of chemists from the University of Seville (US) has managed to distinguish between different kinds of tea leaves on the basis of their mineral content and by using artificial neural networks. This technique makes it possible to differentiate between the five main varieties of tea – white, green black, Oolong and red tea.

"This method makes it possible to clearly differentiate between the five types of tea – something that is often not easy to do by eye alone – by using analysis of the leaves' mineral content and then mathematically processing these data", José Marcos Jurado, co-author of the study and a researcher at the US, tells SINC.

The technique makes it possible to distinguish between the five main tea varieties (white, green, black, Oolong and red) using chemometrics, a branch of chemistry that uses mathematics to extract useful information from data obtained in the laboratory.

Firstly, the concentrations of the chemical elements in the leaves were determined using 'inductively-coupled plasma atomic emission spectroscopy', which showed the most abundant elements to be calcium, magnesium, potassium, aluminium, phosphorus and sulphur.

Other essential elements were also identified in the tea, such as copper, manganese, iron and zinc, according to this study, which has been published online in the journal Food Chemistry.

Once the mineral content of the leaves was established, probabilistic neural networks were used to find out which type of tea a sample belonged to. These networks are "mathematical algorithms that mimic the behaviour of the neurons in the human nervous system in order to process the information", the expert explains.

This generates a model that receives an input signal (chemical data) and produces an output one, making it possible to predict the type of tea in the sample with a probability of 97%.

The second most commonly drunk beverage in the world

Tea is the second most commonly drunk beverage in the world after water, and this has been the case since 2700BCE. This infusion is prepared from the plant Camellia sinensis. The five tea varieties result from the different kinds of preparation process that the leaves are subjected to after being harvested.

White tea is a non-fermented tea made up of new buds and leaves that are protected from sunlight as they grow in order to limit chlorophyll production. Green tea is another unfermented tea, but it is made by using older green leaves.

The Oolong and black tea varieties are made by fermenting the leaves, although in the first case these are completely fermented, while black tea undergoes an intermediate controlled fermentation process of between 10% and 70%.

Red, or Pu-erh, tea is a fermented product obtained from another variety of the plant, Camellia sinensis var assamica, which is cultivated in the Chinese region of Yunnan.

The health benefits of the leaves of this plant are well known. Aside from acting as an antioxidant, diuretic and relieving hypertension, it is also an important source of essential elements such as aluminium, copper, zinc, calcium and potassium.

References:

James S. McKenzie, José Marcos Jurado y Fernando de Pablos. "Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks". Food Chemistry 123 (3): 859�, 2010. Doi: 10.1016/j.foodchem.2010.05.007.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>