Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Gene Suppression in Cancer Cells - Four-in-One

06.05.2009
Diagnosis and treatment in one go: Korean researchers led by Tae Gwan Park and Jinwoo Cheon have developed the basis for a four-in-one agent that can detect, target, and disable tumor cells while also making them macroscopically and microscopically visible.

As they report in the journal Angewandte Chemie, their work involves magnetic iron oxide particles with a fluorescence dye, RNA fragments, and a special peptide attached.

The peptide is present to specifically identify the cancer cells; the RNA fragments suppress the special cancer-cell genes, killing the cells. The magnetic particles act as a contrast agent for magnetic resonance imaging, and the fluorescence dye allows for microscopic imaging of the target cells.

In order to build a protein according to the genetic information in a cell, the gene on the DNA is read off and translated into a “stencil”, mRNA, which is then used by the cell as a blueprint for the protein. The mRNA is a good point of attack to stop the synthesis of proteins required for tumor growth. To achieve this, siRNAs (small interfering RNAs) are introduced into the cell. These are short, double-stranded RNA fragments that bind specifically to the target mRNA. Inside the cell, a special protein complex binds to the siRNA, which unwinds and cleaves the mRNA. In this unprotected form, the mRNA is rapidly degraded by the cell.

When bound to nanoparticles, the siRNAs are easier to slip into cells. In order to specifically target cancer cells, the particles carry a short peptide, called RGD, which points the way: RGD strongly binds to an integrin, a membrane protein that is anchored to metastasizing tumor cells in much higher amounts than in healthy tissue. The integrins with RGD-equipped nanoparticles are actively brought into the cell interior with their cargo intact (receptor-mediated endocytosis).

The magnetic particles not only act as an aide for transport, they are also a contrast agent for MRI. This reveals where the tumors are, whether the particles are concentrating there, and how the treatment is progressing. If higher resolution is required, the fluorescence dye molecules come into play. In histological slides of tissue samples, they make it possible to see how the magnetic particles are taken up by individual cells an in which cell compartments they are concentrated.

Author: Jinwoo Cheon, Yonsei University, Seoul (South Korea), http://chem.yonsei.ac.kr/~cheon/

Title: All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery

Angewandte Chemie International Edition, doi: 10.1002/anie.200805998

Jinwoo Cheon | Angewandte Chemie
Further information:
http://chem.yonsei.ac.kr/~cheon/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>