Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweetening neurotransmitter receptors and other neuronal proteins

28.10.2016

Researchers discover a “sugar-code” for neuronal membrane proteins.

To rapidly carry information throughout the body, neurons form intricate networks by sending long protrusions to physically contact other neurons, sometimes meters away from where their main body (hence called the cell body) is located. These tree-like protrusions are either called axons if they are used to send information or dendrites if they receive information from other neurons.


Many neuronal proteins have atypical glycosylation profiles consistent with the virtual absence of an important organelle, the Golgi apparatus, in neuronal processes

Max Planck Institute for Brain Research

Axons and dendrites contact one another at specialized communication structures called synapses where the axon stimulates the dendrite by releasing small chemical compounds called neurotransmitters, that bind to specialized proteins called neurotransmitter receptors which are expressed at the surface of dendrites, and trigger electric signals that travel through the rest of the cell when they are activated.

Sugar molecules, so-called glycans, are one of the components of these receptor proteins, but were not well studied in neurons until now. In a recent paper, Cyril Hanus and colleagues in the Schuman Lab at the Frankfurt Max Planck Institute for Brain Research showed that many neuronal proteins have atypical glycosylation profiles consistent with the virtual absence of an important organelle, the Golgi apparatus, in neuronal processes. These atypical sugar molecules change how the receptors respond to neurotransmitters.

In all cells, surface proteins are made inside the cell in a compartment called the endoplasmic reticulum. During this process, one or several complex sugar molecules are usually added to newly made proteins. These sugar molecules are then modified as the proteins leave the endoplasmic reticulum and pass through another compartment called the Golgi apparatus on the way to the cell surface. The precise number and structure of the sugar molecules attached to the protein define its glycosylation profile.

To adapt their response to synaptic stimulation, for example during learning, neurons control how many receptors are expressed at the cell surface, in particular by producing more of these receptors. These new receptors can be made in the main cell body but, to speed up the process during memory formation, also locally in dendrites, close to synapses where they are needed. However, while the endoplasmic reticulum is found all over the neuron, including in the dendrites, the Golgi apparatus is generally only present in the main cell body. It was not known how surface proteins are made in the dendrites or how the proteins’ glycosylation profiles are altered in the absence of a Golgi apparatus.

Hanus et al. used microscopy and advanced biochemical techniques to study the glycosylation profiles of surface proteins in rat neurons. The experiments revealed that immature glycosylation profiles are found on hundreds of different proteins that have been transported to the cell surface. This includes many neurotransmitter receptors but also numerous other key surface proteins. Next, Hanus et al. selectively blocked the modification of sugar molecules on proteins in the Golgi apparatus. This showed that dendrites are able to form and work properly even if surface proteins have primarily immature glycosylation profiles. Finally, the authors showed that these immature glycosylation profiles change the way neurotransmitter receptors react to stimulation by neurotransmitters, showing that the glycosylation profile of surface proteins impact their function.

Cyril Hanus: “These new results show that neurons can produce surface proteins in a way that is different from other cells, and in doing so control important aspects of the function of these proteins, a process that may, in the long run, be exploited to design new medicines tailored to neuronal proteins.”

Publication: Hanus, C., Geptin, H., Tushev, G., Garg, S., Alvarez-Castelao, B., Sambandan, S., Kochen, L., Hafner, A.S., Langer, J.D., Schuman, E.M. (2016). Unconventional secretory processing diversifies neuronal ion channel properties. eLife 5: e20609 (https://elifesciences.org/content/5/e20609/article-info)

Weitere Informationen:

http://tinyurl.com/jxl8vxc

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>