Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of flower petals shows evolution at the cellular level

18.11.2011
A new study of flower petals shows evolution in action, and contradicts more that 60 years of scientific thought.

The findings are reported by a scientist from UC Santa Barbara and a research team from Harvard University in the Proceedings of the Royal Society B this week.

Columbine flowers, known as Aquilegia, evolved several lengths of petal spurs that match the tongue lengths of their pollinators, including bees, hummingbirds, and hawkmoths. The petal spurs are shaped like a tubular pocket and contain nectar at the tip. The spurs grow from 1 to 16 centimeters in length, depending on the species.

The research team discovered that longer spurs result from the lengthening of cells in one direction, called anisotropy, and not from an increased number of cells. This finding contradicts decades of scientific thinking that assumed the elongated petals form via continued cell divisions.

"When we went in and looked at this in detail, we found that even the super-long-spurred flower doesn't differ much in cell number from the short-spurred one," said Scott A. Hodges, professor in the Department of Ecology, Evolution, and Marine Biology at UCSB.

He said that most studies of shape, particularly of leaves and of some flower parts, have focused their attention primarily on genes controlling cell division. "What this study is saying is that you don't want to just look at those kinds of characteristics; here's this whole other way to produce a tremendous amount of shape diversity without involving cell divisions," said Hodges.

In long-spurred plants, the spurs reach the same length at the same point in time as the short-spurred flowers, but they keep on growing, said Hodges. The rest of the flower has to wait for the spurs to lengthen. Until then, the pollen can't be released and the ovules are not ready to be fertilized. The flower has to stop that part of development while the spurs grow. Then, almost a week later, those flowers become reproductive, after the spurs have grown longer.

The evolution of petal spurs in columbines is considered a textbook example of adaptive radiation. Like Darwin's finches, over time, the columbines evolved a variety of species to exploit different ecological niches. The short-spurred columbines can be easily pollinated by bees. Hummingbirds have long beaks and tongues and can pollinate flowers with spurs of medium length. Hawkmoths have very long tongues and can pollinate columbines with the longest spurs, such as Aquilegia longissima.

In addition to Hodges, the co-authors are Joshua R. Puzey, Sharon J. Gerbode, Elena M. Kramer, and Lakshminarayanan Mahadevan, all from Harvard University.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>