Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds that the same face may look male or female

25.11.2010
Depending on where it appears in a person's field of view

Neuroscientists at MIT and Harvard have made the surprising discovery that the brain sees some faces as male when they appear in one area of a person's field of view, but female when they appear in a different location.

The findings challenge a longstanding tenet of neuroscience — that how the brain sees an object should not depend on where the object is located relative to the observer, says Arash Afraz, a postdoctoral associate at MIT's McGovern Institute for Brain Research and lead author of a new paper on the work.

"It's the kind of thing you would not predict — that you would look at two identical faces and think they look different," says Afraz. He and two colleagues from Harvard, Patrick Cavanagh and Maryam Vaziri Pashkam, described their findings in the Nov. 24 online edition of the journal Current Biology.

In the real world, the brain's inconsistency in assigning gender to faces isn't noticeable, because there are so many other clues: hair and clothing, for example. But when people view computer-generated faces, stripped of all other gender-identifying features, a pattern of biases, based on location of the face, emerges.

The researchers showed subjects a random series of faces, ranging along a spectrum of very male to very female, and asked them to classify the faces by gender. For the more androgynous faces, subjects rated the same faces as male or female, depending on where they appeared.

Study participants were told to fix their gaze at the center of the screen, as faces were flashed elsewhere on the screen for 50 milliseconds each. Assuming that the subjects sat about 22 inches from the monitor, the faces appeared to be about three-quarters of an inch tall.

The patterns of male and female biases were different for different people. That is, some people judged androgynous faces as female every time they appeared in the upper right corner, while others judged faces in that same location as male. Subjects also showed biases when judging the age of faces, but the pattern for age bias was independent from the pattern for gender bias in each individual.

Afraz believes this inconsistency in identifying genders is due to a sampling bias, which can also be seen in statistical tools such as polls. For example, if you surveyed 1,000 Bostonians, asking if they were Democrats or Republicans, you would probably get a fairly accurate representation of these percentages in the city as a whole, because the sample size is so large. However, if you took a much smaller sample, perhaps five people who live across the street from you, you might get 100 percent Democrats, or 100 percent Republicans. "You wouldn't have any consistency, because your sample is too small," says Afraz.

He believes the same thing happens in the brain. In the visual cortex, where images are processed, cells are grouped by which part of the visual scene they analyze. Within each of those groups, there is probably a relatively small number of neurons devoted to interpreting gender of faces. The smaller the image, the fewer cells are activated, so cells that respond to female faces may dominate. In a different part of the visual cortex, cells that respond to male faces may dominate.

Source: "Spatial Heterogeneity in the Perception of Face and Form Attributes" by Arash Afraz, Maryam Vaziri Pashkam, and Patrick Cavanagh. Current Biology, 24 November, 2010

Written by Anne Trafton, MIT News Office

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>