Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds that the same face may look male or female

25.11.2010
Depending on where it appears in a person's field of view

Neuroscientists at MIT and Harvard have made the surprising discovery that the brain sees some faces as male when they appear in one area of a person's field of view, but female when they appear in a different location.

The findings challenge a longstanding tenet of neuroscience — that how the brain sees an object should not depend on where the object is located relative to the observer, says Arash Afraz, a postdoctoral associate at MIT's McGovern Institute for Brain Research and lead author of a new paper on the work.

"It's the kind of thing you would not predict — that you would look at two identical faces and think they look different," says Afraz. He and two colleagues from Harvard, Patrick Cavanagh and Maryam Vaziri Pashkam, described their findings in the Nov. 24 online edition of the journal Current Biology.

In the real world, the brain's inconsistency in assigning gender to faces isn't noticeable, because there are so many other clues: hair and clothing, for example. But when people view computer-generated faces, stripped of all other gender-identifying features, a pattern of biases, based on location of the face, emerges.

The researchers showed subjects a random series of faces, ranging along a spectrum of very male to very female, and asked them to classify the faces by gender. For the more androgynous faces, subjects rated the same faces as male or female, depending on where they appeared.

Study participants were told to fix their gaze at the center of the screen, as faces were flashed elsewhere on the screen for 50 milliseconds each. Assuming that the subjects sat about 22 inches from the monitor, the faces appeared to be about three-quarters of an inch tall.

The patterns of male and female biases were different for different people. That is, some people judged androgynous faces as female every time they appeared in the upper right corner, while others judged faces in that same location as male. Subjects also showed biases when judging the age of faces, but the pattern for age bias was independent from the pattern for gender bias in each individual.

Afraz believes this inconsistency in identifying genders is due to a sampling bias, which can also be seen in statistical tools such as polls. For example, if you surveyed 1,000 Bostonians, asking if they were Democrats or Republicans, you would probably get a fairly accurate representation of these percentages in the city as a whole, because the sample size is so large. However, if you took a much smaller sample, perhaps five people who live across the street from you, you might get 100 percent Democrats, or 100 percent Republicans. "You wouldn't have any consistency, because your sample is too small," says Afraz.

He believes the same thing happens in the brain. In the visual cortex, where images are processed, cells are grouped by which part of the visual scene they analyze. Within each of those groups, there is probably a relatively small number of neurons devoted to interpreting gender of faces. The smaller the image, the fewer cells are activated, so cells that respond to female faces may dominate. In a different part of the visual cortex, cells that respond to male faces may dominate.

Source: "Spatial Heterogeneity in the Perception of Face and Form Attributes" by Arash Afraz, Maryam Vaziri Pashkam, and Patrick Cavanagh. Current Biology, 24 November, 2010

Written by Anne Trafton, MIT News Office

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>