Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Challenges Previously Held Beliefs About the Role of Genetic Mutations in Colon Cancer Development

11.06.2012
In exploring the genetics of mitochondria – the powerhouse of the cell – researchers at Fred Hutchinson Cancer Research Center have stumbled upon a finding that challenges previously held beliefs about the role of mutations in cancer development.

For the first time, researchers have found that the number of new mutations are significantly lower in cancers than in normal cells.

“This is completely opposite of what we see in nuclear DNA, which has an increased overall mutation burden in cancer,” said cancer geneticist Jason Bielas, Ph.D., whose findings are published in the June 7 issue of PLoS Genetics.

Mutations are changes in the genetic sequence of a cell’s genome and can occur as a result of environmental exposure to viruses, radiation and certain chemicals, or due to spontaneous errors during cell division or DNA replication.

Mitochondria, which are primarily responsible for the cell’s energy production, are semi-autonomous; similar to the nucleus, they have their own set of DNA, which encodes genes critical for the functioning of the cell. While the role of genomic instability has been well characterized in nuclear DNA, this is the first attempt to determine whether instability in mitochondrial DNA may play a similar role in cancer growth and metastasis.

“We were surprised to find that the frequency of new mutations in mitochondrial DNA from tumor cells is decreased compared to that of normal cells,” said Bielas, an assistant member of the Public Health Sciences and Human Biology divisions at the Hutchinson Center. “By extension, this suggests, somewhat counterintuitively, that higher mitcochondrial mutation rates may actually serve as a barrier to cancer development, and drugs that focus directly on increasing mitochondrial DNA damage and mutation might swap cancer’s immortality for accelerated aging and tumor-cell death.”

For the study, the researchers used using an ultra-sensitive test to detect mutations in mitochondrial DNA from normal and cancerous colon tissue resected from 20 patients prior to chemotherapy.

Bielas and colleagues first set out to analyze mutation rates in mitochondrial DNA because they wanted to see if it could act as a surrogate for nuclear DNA as a cancer biomarker. “Cells contain a thousandfold more mitochondrial genetic material than nuclear DNA, so theoretically you’d need a thousand times less tissue to get the same genetic information to predict clinical outcomes such as how fast a tumor would progress or whether it would be resistant to therapy,” Bielas said.

While mitochondrial DNA proved to be an unreliable stand-in for nuclear DNA as a cancer biomarker, it offers promise as a new drug target.

“If we could increase DNA damage and mutation within the mitochondrial genome, theoretically we could decrease cancer,” Bielas said. “That’s what we’re testing now. This is a whole new hypothesis.”

The way mitochondria maintain genetic stability in the face of cancer, Bielas suggests, may be because unlike normal cells, cancer cells do not need oxygen to survive. In fact, cancer cells decrease the process by which they get energy from the mitochondria and rely instead on a process called glycolysis, which is a form of energy production in the absence of oxygen.

“We believe less damage occurs to mitochondrial DNA of cancer cells because they no longer need oxygen,” he said. “If we could program a cancer cell to once again need oxygen, we expect it would die – with minimal side effects.”

Bielas and colleagues are now testing this theory in the laboratory, seeing whether cancer cells that are reprogrammed to utilize oxygen and/or are targeted for mitochondrial DNA damage respond better to certain therapeutic agents.

“This finding is a game-changer because it challenges previous notions about the role of mutations in cancer development,” said Bielas, who is also an affiliate assistant professor of pathology at the University of Washington, where the ultra-sensitive mutation-detection technology, called Random Mutation Capture, was developed. The test is so sensitive that it can detect the mutational equivalent of one misprinted letter in a library of a thousand 1,000-page books.

“This work started with the idea that there would be a huge mutation burden in the mitochondrial DNA, but our findings were completely opposite of what we had expected. Hopefully our discovery will open up new avenues for treatment, early detection and monitoring treatment response of colon cancer and other malignancies,” he said.

The National Institute of Environmental Health Sciences, the Ellison Medical Foundation and Fred Hutchinson Cancer Research Center funded this research. Collaborators included researchers at the University of Washington, the University of North Carolina, and St. Vincent’s University Hospital in Dublin, Ireland.

Note for media only: To obtain an embargoed copy of the PLoS Genetics paper, “Decreased Mitochondrial DNA Mutagenesis in Human Colorectal Cancer,” please contact Kristen Woodward in Hutchinson Center media relations, kwoodwar@fhcrc.org or 206-667-5095.

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>