Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of a microbial hydrogen engine

27.10.2011
New results on biological hydrogen conversion published in Nature by UniCat researcher

Molecular hydrogen is discussed as promising renewable energy source and attractive alternative to fossil fuels. Many microorganisms exploit the beneficial properties of hydrogen already since more than two billion years. They accommodate dedicated enzymes that either split or evolve molecular hydrogen according to the specific metabolic requirements of the cell.

These hydrogen-converting biocatalysts are called hydrogenases and occur in nature in different varieties. Most hydrogenases become inactivated or even destroyed in the presence of molecular oxygen. This intrinsic property represents a serious problem regarding biotechnological application. However, some hydrogenases maintain their catalytic activity in the presence of oxygen.

An interdisciplinary team of scientists headed by the UniCat researchers Oliver Lenz and Bärbel Friedrich from Humboldt-Universitaet zu Berlin and Patrick Scheerer and Christian Spahn from Charité - Universitätsmedizin Berlin now succeeded in solving the first X-ray crystal structure of a hydro-genase that produces hydrogen even at atmospheric oxygen concentration.

The X-ray crystal structure allows detailed insights into the three-dimensional architecture of the enzyme and its metal cofactors which participate in catalysis. The results have been published in Nature online (http://dx.doi.org/10.1038/nature10505). Interestingly, the hydrogenase contains a novel iron-sulfur center which acts as an electronic switch in the course of detoxification of detrimental oxygen. With this discovery, the scientists could substantiate the hypothesis that this particular group of hydro-genases is able to convert both, hydrogen and oxygen in a catalytic manner. During catalysis, oxygen becomes reduced to harmless water.

The new results are particularly relevant for fundamental research. More-over, also the biotechnological application of hydrogenases, e.g. solar-driven hydrogen production by photosynthetic microorganisms and enzyme-driven biological fuel cells, may profit from the new findings. Furthermore, it is anticipated that the novel iron-sulfur center will inspire chemists to design model compounds with improved catalytic properties.

UniCat
“Unifying Concepts in Catalysis” (UniCat) is the Cluster of Excellence within the framework of the German Initiative for Excellence researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. The subject areas covered range from the chemical conversion of natural and biogas, the activation of carbon dioxide and the creation of hydrogen from light and water, to the synthesis of active ingredients using enzymes.

Published in: Fritsch, J., P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz & C. M. Spahn. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature doi: 10.1038/nature10505 (2011)

For further information, please contact:

Dr. Oliver Lenz, Institut für Biologie / Mikrobiologie der Humboldt-Universität zu Berlin, Germany, Phone: +49 (0) 30/2093 8173, E-mail: oliver.lenz@cms.hu-berlin.de

Dr. Martin Penno, UniCat Cluster of Excellence, Public Relations Officer
Technische Universität Berlin, Berlin, Germany, Phone: + 49 (0) 30/314-28 592, E-mail: martin.penno@tu-berlin.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>