Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells May Do Best With A Little Help From Their Friends

29.08.2013
“Helper cells” improve survival rate of transplanted stem cells, mouse study finds

Like volunteers handing out cups of energy drinks to marathon runners, specially engineered “helper cells” transplanted along with stem cells can dole out growth factors to increase the stem cells’ endurance, at least briefly, Johns Hopkins researchers report.


Credit: Yajie Liang

Caption: Luminescent stem cells transplanted into mice alone (left) and with helper cells (right), shown one day after transplantation.

Their study, published in the September issue of Experimental Neurology, is believed to be the first to test the helper-cell tactic, which they hope will someday help to overcome a major barrier to successful stem cell transplants.

“One of the bottlenecks with stem cell therapy is the survival of cells once they’re put in the body — about 80 to 90 percent of them often appear to die,” says Jeff Bulte, Ph.D., a professor in the Johns Hopkins University School of Medicine’s Institute for Cell Engineering. “We discovered it helps to put the stem cells in with some buddies that give off growth factors.”

Stem cells can morph to take on any role in the body, making them theoretically useful to treat conditions ranging from type 1 diabetes (replacing insulin-producing cells in the pancreas) to heart disease (taking over for damaged heart cells). The biggest problem for transplanted stem cells, Bulte says, is that they’re initially grown in a dish with ready access to oxygen, then put in the body, where levels are relatively low.

“They get a shock,” he says. Other research groups have had some success with acclimating cells to lower oxygen levels before transplantation; another promising strategy has been to provide the stem cells with scaffolds that give them structure and help integrate them with the host.

The research team, spearheaded by postdoctoral fellow Yajie Liang, Ph.D., wondered whether the cells’ survival could also be enhanced with steady doses of a compound called basic fibroblast growth factor (bFGF), an “energy drink” that spurs cells to grow. They engineered cultured human and mouse cells to make greater-than-normal amounts of bFGF under the control of a drug called doxycycline (dox). Making the bFGF gene responsive to dox meant the researchers could control how much bFGF was made, Liang explains.

The team then transplanted the engineered helper cells and stem cells into mice. The stem cells had themselves been engineered to make a luminescent protein, and using a special optical instrument, the researchers could monitor the intensity of the luminescence through the animals’ skin to see how many of the cells were still alive. The team gave the mice steady doses of dox to keep the bFGF flowing.

For the first three days after injection, the stem cells with helpers gave off a noticeably stronger signal than stem cells transplanted alone, Liang says, but a few days later, there was no difference between the two.

Despite the short duration of the helper cells’ effect, Bulte says, the experiment shows the potential of using helper cells in this way. Perhaps the ultimate solution to keeping transplanted stem cells alive will be to use helpers that give off a cocktail of growth factors, he suggests, as well as pre-conditioning for low oxygen conditions and scaffolds. “Once the rubber hits the road, it’s very important that the stem cells survive for a long time,” he says.

Other authors on the paper were Yajie Liang, Louise Ågren, Agatha Lyczek and Piotr Walczak, all of the Johns Hopkins University School of Medicine.

This study was funded by the National Institute of Neurological Disorders and Stroke (grant number 2RO1 NS045062) and the Anders Wall Foundation.

Shawna Williams | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>