Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells May Do Best With A Little Help From Their Friends

29.08.2013
“Helper cells” improve survival rate of transplanted stem cells, mouse study finds

Like volunteers handing out cups of energy drinks to marathon runners, specially engineered “helper cells” transplanted along with stem cells can dole out growth factors to increase the stem cells’ endurance, at least briefly, Johns Hopkins researchers report.


Credit: Yajie Liang

Caption: Luminescent stem cells transplanted into mice alone (left) and with helper cells (right), shown one day after transplantation.

Their study, published in the September issue of Experimental Neurology, is believed to be the first to test the helper-cell tactic, which they hope will someday help to overcome a major barrier to successful stem cell transplants.

“One of the bottlenecks with stem cell therapy is the survival of cells once they’re put in the body — about 80 to 90 percent of them often appear to die,” says Jeff Bulte, Ph.D., a professor in the Johns Hopkins University School of Medicine’s Institute for Cell Engineering. “We discovered it helps to put the stem cells in with some buddies that give off growth factors.”

Stem cells can morph to take on any role in the body, making them theoretically useful to treat conditions ranging from type 1 diabetes (replacing insulin-producing cells in the pancreas) to heart disease (taking over for damaged heart cells). The biggest problem for transplanted stem cells, Bulte says, is that they’re initially grown in a dish with ready access to oxygen, then put in the body, where levels are relatively low.

“They get a shock,” he says. Other research groups have had some success with acclimating cells to lower oxygen levels before transplantation; another promising strategy has been to provide the stem cells with scaffolds that give them structure and help integrate them with the host.

The research team, spearheaded by postdoctoral fellow Yajie Liang, Ph.D., wondered whether the cells’ survival could also be enhanced with steady doses of a compound called basic fibroblast growth factor (bFGF), an “energy drink” that spurs cells to grow. They engineered cultured human and mouse cells to make greater-than-normal amounts of bFGF under the control of a drug called doxycycline (dox). Making the bFGF gene responsive to dox meant the researchers could control how much bFGF was made, Liang explains.

The team then transplanted the engineered helper cells and stem cells into mice. The stem cells had themselves been engineered to make a luminescent protein, and using a special optical instrument, the researchers could monitor the intensity of the luminescence through the animals’ skin to see how many of the cells were still alive. The team gave the mice steady doses of dox to keep the bFGF flowing.

For the first three days after injection, the stem cells with helpers gave off a noticeably stronger signal than stem cells transplanted alone, Liang says, but a few days later, there was no difference between the two.

Despite the short duration of the helper cells’ effect, Bulte says, the experiment shows the potential of using helper cells in this way. Perhaps the ultimate solution to keeping transplanted stem cells alive will be to use helpers that give off a cocktail of growth factors, he suggests, as well as pre-conditioning for low oxygen conditions and scaffolds. “Once the rubber hits the road, it’s very important that the stem cells survive for a long time,” he says.

Other authors on the paper were Yajie Liang, Louise Ågren, Agatha Lyczek and Piotr Walczak, all of the Johns Hopkins University School of Medicine.

This study was funded by the National Institute of Neurological Disorders and Stroke (grant number 2RO1 NS045062) and the Anders Wall Foundation.

Shawna Williams | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>