Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Sprayed at Once

24.11.2010
Ultrathin coatings made through simultaneous spraying of interacting substances

Coatings functionalize surfaces or protect them from processes such as corrosion, abrasion, and weathering, and may provide an aesthetic appearance—automotive coatings and non-stick frying pans are good examples.

Contact lenses, implants, LEDs, or photovoltaic cells require extremely thin coatings. In the journal Angewandte Chemie, the teams led by Gero Decher at the Institut Charles Sadron in Strasbourg (France) have now introduced a new process for the production of ultrathin coatings that is especially simple, versatile, and suitable for large-scale processes.

A simple yet powerful method for the assembly of nanoscale films is the already well-known layer-by-layer technique. Two mutually interacting species, for example positively and negatively charged polymers, are consecutively adsorbed from solution, forming hybrid thin films through a self-organization process. One major improvement to this method was introduced with the technique of spray-assisted deposition, in which atomized mists of solutions containing each of the two substances are sprayed on a surface in an alternating fashion. This accelerates the process and facilitates scaling up to industrial levels.

The French–German researchers led by Decher and Pierre Schaaf at the Centre National de la Recherche Scientifique and Jean-Claude Voegel at the Institut National de la Santé et de la Recherche Médicale have now been able to make another substantial improvement to this technique: In “simultaneous spray coating of interacting species” (SSCIS), the two complementary components are not applied consecutively, but are simultaneously sprayed against a receiving surface. Depending on the process conditions, the partner substances rapidly form a continuous layer. The thickness of the film is controlled by changing the spraying time and can range from a few nanometers to a few micrometers. This results in highly homogenous coatings that can even possess optical quality.

The one-step process is cheap, robust, user-friendly, and unbelievably versatile. In principle, all pairs of substances that interact with each other, such as inorganic ions of opposite charge, are suitable for use with the simultaneous spray process. It is thus possible to produce films of calcium fluoride (for optical components) or deposits of calcium phosphate (for use in biomaterials).

Interestingly, the new technique also works with pairs that do not produce intact layers when the conventional layer-by-layer process is used. Thus the presented results open up a wealth of new possibilities to produce surfaces with tailored specific functionalities, for example for catalysis, to make implants more biocompatible or for tissue engineering.

Author: Gero Decher, Institut Charles Sadron, Strasbourg (France), http://www-ics.u-strasbg.fr/spip.php?article185

Title: Spray-On Organic/Inorganic Films: A General Method for the Formation of Ultrathin Coatings

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201002729

Gero Decher | Angewandte Chemie
Further information:
http://www-ics.u-strasbg.fr/spip.php?article185
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>