Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species of ancient rodents hint at what could be world's oldest grasslands

24.07.2012
Analysis of fossilized teeth indicate early open, dry environment in Chilean Andes

A paleontological team that includes scientists from the American Museum of Natural History; University of California, Santa Barbara; and Case Western Reserve University has described two ancient species of South American rodents, including the oldest chinchilla, a discovery that substantiates what might be the earliest grasslands in the world.


This is a reconstruction of Mesoprocta hypsodus, an extinct, 13-million-year-old Bolivian relative of the new dasyproctid rodent Andemys termasi from Chile.

Credit: V. Simeonovski & D.A. Croft

The two new species lived near a chain of volcanoes about 32.5 million years ago in what are now the steep slopes of a river valley in the Chilean Andes. Studies of the teeth of the ancient chinchilla support evidence from other species in the concurrent fauna indicating that the animals inhabited an open and dry environment 15 million years before grasslands emerged elsewhere in the world. The research is published this week in American Museum Novitates, a peer-reviewed scientific journal of the American Museum of Natural History.

"The new chinchilla fossil provides important new evidence that early rodents joined other South American mammals in evolving ways to cope with an abrasive diet long before horses, sheep and other mammal groups on other continents 'invented' similar adaptations for making their teeth wear out more slowly while eating tough grasses," said John Flynn, Frick Curator of Fossil Mammals and dean of the Richard Gilder Graduate School at the American Museum of Natural History, who is a co-author of the paper.

Flynn and colleagues have explored the fossil history preserved in the Chilean Andes for the past 25 years. In the Tinguiririca River valley, an area near the border of Chile and Argentina once thought to be inhospitable to fossils because of the dominance of volcanic rocks, the researchers have uncovered hundreds of specimens, including the two newly named species of early South American rodents.

The new specimens—Andemys termasi, for which the genus name means "mouse of the Andes" and the species name refers to the nearby town of Termas del Flaco, and Eoviscaccia frassinettii, named for the late Daniel Frassinetti, who was a longtime collaborator and head of paleontology at Chile's National Museum of Natural History—are the second-oldest rodents ever discovered in South America. The oldest are recently discovered 41-million-year-old rodents from Peru. The new species are distinguished from the older rodents by many features of their teeth.

Rodents are known and named for their ever-growing incisors, which they use for gnawing. Yet the back or "cheek" teeth, used for grinding, have a special story to tell in this case: one that focuses on the crown, the portion of the teeth protected by long-wearing enamel. While the Peruvian rodents had cheek teeth with a crown extending only to the gum line, one of the new ancient Chilean rodents has high crowns that extended underneath the gums, enabling it to eat gritty foods like grass.

"The Tinguiririca chinchilla replicates a dental pattern appearing in many other South American herbivores such as Notoungulates—hooved animals that are now extinct—at that time. This pattern is called hypsodonty," said lead author Ornella Bertrand, who conducted the research through the Museum's Annette Kade Graduate Student Fellowship Program.

Hypsodonty, the quality of having high-crowned teeth, is a trait that emerged in multiple kinds of animals, such as horses, goats, and cows. Hypsodonty is generally interpreted as an adaption that arose in response to the spread of grassy environments.

The age of the fossils and the high-crowned teeth of the new chinchilla and many other mammals in the same fauna suggest to researchers that the mountainous Tinguiririca River valley was a grassy plain at the time the debris from a volcanic eruption buried them. This means that the Chilean Andes supported plains environments some 15 million years before such ecosystems are known on other continents.

"In addition to being preserved in unusual volcanically derived sediments, the new rodent species are notable for coming from what is assuredly one of the most spectacularly scenic and rugged sequences of fossil mammal localities in the world," said co-author André Wyss, of the University of California, Santa Barbara.

The new rodent species indicate that there was explosive diversification on South America when it was an island continent, before the formation of the Isthmus of Panama about 3.5 million years ago.

Eoviscaccia frassinettii, which is related to the modern chinchilla, and, Andemys termasi, related to a lesser-known group that includes the agoutis, a group of short-tailed rat-like species also native to South and Central America, belong to what originally was an exclusively South American group of rodents called caviomorphs.

Caviomorph rodents include the New World porcupines, capybara, guinea pig, and many others. Based on the fossil record and evolutionary relationships, the ancestors of these animals are thought to have come to South America from Africa on rafts of debris. Once on the massive island, caviomorphs diversified into some of the unique species we see today.

"The island continent of South America represented a land of evolutionary opportunity for the ancestors of chinchillas and other caviomorph rodents," said co-author Darin Croft of Case Western Reserve University in Cleveland. "These remarkable rodents came to fill an amazing variety of ecological niches and today are among the most characteristic Neotropical mammals."

The specimens of both new species are part of the collections of the National Museum of Natural History of Chile. The Andemys termasi specimen is featured in the American Museum of Natural History's exhibition Extreme Mammals, which is currently being shown at The Field Museum in Chicago. Funding for this work was provided by U.S. National Science Foundation collaborative research grants to A.R. Wyss (DEB-0317177) and J. J. Flynn (DEB-0317014 and DEB-0513476).

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>