Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small But Super

31.05.2010
Lightweight, handy magnets for portable NMR spectrometers

High-resolution nuclear magnetic resonance (NMR) spectrometry is one of the most powerful analytical tools for the precise determination of molecular structures and dynamics.

To attain a high resolution, very strong magnetic fields are required, which are produced by superconducting electromagnets. Federico Casanova and his co-workers at the RWTH In Aachen (Germany) have now developed a light, permanent magnet that is suitable for NMR and fits in the palm of your hand. As the researchers report in the journal Angewandte Chemie, this could represent the cornerstone for portable, high-resolution NMR instruments.

In the 1960s and 1970s, NMR spectrometers used permanent magnets, which were not as massive as the superconducting magnets used today. With modern, improved permanent magnets, it should theoretically be possible to build handy, robust devices. This would make it possible to obtain NMR spectra that are about a third as sensitive as those obtained with standard-sized superconducting magnets. “This would be an acceptable concession for a small and portable NMR system,” says Casanova. “However, there is one problem: As the magnet gets smaller, the dimensions of the homogenous (uniform) magnetic field also decrease, making the sample volume smaller. Reduction of the sample volume affects the signal-to-noise ratio.”

The Aachen team has now developed a small permanent magnet weighing only 500 g with an unusually homogenous magnetic field that allows a standard-sized NMR tube to be used. Their success is due to a Halbach array: individual magnetic blocks are assembled into a cylinder so that the direction of their magnetization is tuned to produce an especially homogenous field within the cylinder. The researchers connect three Halbach rings whose diameter is optimized to compensate for the distortion of the magnetic field at the ends of the cylindrical inner chamber. In this way a sufficiently large homogenous magnetic field is produced inside the cylinder, which is large enough for a standard NMR tube. To even out the inhomogeneities originating from the granularity of the magnetic material, each ring consists of trapezoidal magnetic blocks with gaps in between. Inside the gaps are rectangular magnetic blocks that can be displaced radially to mechanically adjust (“shim”) the magnetic field.

“Spectra we obtained show that our miniature magnet is suitable for high-resolution NMR spectroscopy with standard-sized sample tubes,” reports Casanova. “It would be easy to transport together with the spectrometer. This could allow high-resolution NMR spectroscopy to develop into a portable analytical technique for use on samples in the field.”

Author: Federico Casanova, RWTH Aachen (Germany), http://www.mc.rwth-aachen.de/

Title: Small Magnets for Portable NMR Spectrometers

Angewandte Chemie International Edition 2010, 49, No. 24, 4133–4135, Permalink to the article: http://dx.doi.org/10.1002/anie.201000221

Federico Casanova | Angewandte Chemie
Further information:
http://www.mc.rwth-aachen.de/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht “Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination
23.05.2017 | Universität Zürich

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>