Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules can starve cancer cells

11.10.2011
All cells in our body have a system that can handle cellular waste and release building blocks for recycling.

The underlying mechanism is called autophagy and literally means "self-eating". Many cancer cells have increased the activity of this system and the increased release of building blocks equip the cancer cells with a growth advantage and can render them resistant towards treatment.

"We have discovered a small molecule that can block autophagy in different cancer cells and specifically, this molecule can increase the sensitivity of breast cancer cells towards one of the most commonly used treatments for breast cancer," says Professor Anders H. Lund, at BRIC, University of Copenhagen.

The results have just been published in EMBO Journal: "microRNA-101 is a potent inhibitor of autophagy, Frankel et al."

Our own anti-cancer molecule
The molecule that the researchers have studied is called microRNA-101 and is found naturally in our cells. In cancer research, there is currently a large focus on both autophagy and microRNA molecules, which can control our genes and both mechanisms are known to play an important role for cancer development.

"We have shown that microRNA-101 can turn off specific genes and thereby inhibit autophagy in cancer cells. The fact that microRNA molecules can regulate autophagy is quite new and our results disclose a large and interesting field within cancer research" says researcher Lisa Frankel, who has been leading this research project in Anders H. Lund's laboratory.

Breast cancer treatment
MicroRNA-101 is often lost in liver cancer, prostate cancer and breast cancer. By controlling the level of microRNA-101 in cells of different cancer types, the researchers from BRIC show that microRNA-101 regulates autophagy. In addition, the researchers have shown that breast cancer cells become more sensitive towards treatment with the anti-hormone Tamoxifen, when they via microRNA-101 turn off the autophagy system.

"This result has a clear clinical relevance, as resistance against tamoxifen is a large problem in the treatment of breast cancer," says Anders H. Lund.

The next step of the researchers is to investigate whether other microRNA molecules are involved in the regulation of autophagy in cancer cells. Further, they will take a closer look at the role of microRNA-101 in normal development of our organism and in the development of cancer.

Contact:
Professor Anders H. Lund, BRIC
Phone: +45 35325657
Mobile: +45 30662303
E-mail: anders.lund@bric.ku.dk
Postdoc Lisa Frankel, BRIC
Phone: +45 35325813
E-mail: lisa.frankel@bric.ku.dk

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>