Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sister glue makes sex successful – how sets of genes stick together

25.11.2010
A glue made of protein which sticks our packages of genes together may hold the secret of successful sex, say scientists today. It may also help to explain why older mothers are much more at risk of having babies with Down’s syndrome or other genetic abnormalities caused by the failure of the original embryo cells to divide and separate properly.

Another protein glue usually makes it possible for our genes to be copied and kept together as parallel strands before neatly splitting into two batches of separate chromosomes to become the nucleus of new cells, according to research published in the current issue of the scientific journal Cell (November 24, 2010).


Human mitotic chromosomes, Cohesin dyed in blue
Copyright: IMP

The action of the ‘sister’ glue called sororin may be the missing link in the way the main glue protein called cohesin allows identical DNA strands to bind together in such a stable way that all the chromosomes in a cell can line up and then divide into their two groups during cell division. It is this action which makes all sex possible, allowing genes from two different people, the parents, to mix together to make a new unique individual, their baby.

It is also the mechanism which most often goes wrong in embryo fertilisation in older mothers, leading to miscarriages during pregnancy or genetic abnormalities such as Down’s syndrome babies born with their characteristic facial features and mental retardation. Recent research has shown that as many as 35% of human eggs from women in their forties have either an extra or a missing chromosome. Now scientists have finally started to study the mechanism behind these mistakes made within our bodies.

“We believe that this second glue protein, sororin, is critical in understanding the way embryo cells make these mistakes when copying chromosomes”, says Jan-Michael Peters from the Institute of Molecular Pathology, Vienna, Austria, who led the new research.

The puzzle has been to find out how the glue protein, cohesin makes the two halves of each copied chromosome stick together until exactly the right moment when a cell divides. It has to stop itself being prematurely cut by other proteins in the cell nucleus which act as biological scissors when the cell separates.

Now the Austrian research team has discovered that the new glue protein sororin acts as a shield for the cohesin, protecting it from being removed from DNA too early, stopping the individual members of the pairs of chromosomes drifting free from each other.

“If the cohesion lets go too soon, the individual chromosome halves run the risk of ending up in the wrong cell nucleus, which could mean that a new egg cell has one too many or one too few chromosomes”, says Tomoko Nishiyama from the Peters research team. “This can lead to an unviable egg, an embryo that dies in the womb, a miscarriage, or a baby born with genetic abnormalities like Down’s syndrome”.

"While this work gives us a new and important bit of basic information about cell division, it also points us towards further research in understanding exactly what goes wrong with the missing and extra chromosomes which cause genetic diseases", Jan-Michael Peters adds.

The paper "Sororin Mediates Sister Chromatid Cohesion by Antagonizing Wapl" (Nishiyama et al.) is published in Cell on Wednesday, November 24, 2010.

About the IMP
The IMP is a basic research institute in Vienna, Austria. Its main sponsor is Boehringer Ingelheim International, headquartered in Germany. With over 220 employees from 30 different nations,the IMP is a Center of Excellence in the life sciences and the core unit of the Campus Vienna Biocenter. Research at the IMP aims at elucidating the molecular basis of normal development and disease.
Contact
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Tel. +43 1 79730-3625
mobile: +43 (0)664 8247910
hurtl@imp.ac.at
Scientific Contact
Dr. Jan-Michael Peters
Jan-Michael.Peters@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>