Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple twists of fate

30.09.2008
Brandeis researchers use advanced scientific techniques -- as well as binder clips and tape -- to reveal how gene regulation works

A novel Brandeis University study this week in PLoS Biology reports on some of the molecular gymnastics performed by a protein involved in regulating DNA transcription. Using state-of-the art tools, researchers observed the shape and behavior of individual DNA molecules bent into tight loops by Lac repressor, a protein from the bacterium E.coli that switches on and off individual genes.

The study brings scientists an important step closer to understanding the phenomenon of gene regulation, a process elemental to biology from maintaining cell stability in bacteria such as E. coli to helping facilitate the most complex processes of human development and disease. The research was carried out by former Brandeis Ph.D. student Oi Kwan Wong in collaboration with scientists from Wake Forest University and the University of North Carolina.

To switch some genes on or off, a protein has to bind to two different places on the gene simultaneously, creating a loop from the DNA. Although such loops are common, many of their features are poorly understood. Using atomic force microscopy and tethered particle motion (TPM), a technique pioneered at Brandeis, the researchers were able to look at single molecules of DNA to infer the shape of the loop, which is not visible. They discovered that many earlier models of loops were probably wrong because they required the DNA to bend and twist in ways incompatible with the behaviors the scientists observed in the single DNA molecules.

Atomic force microscopy enabled the researchers to view the shape of the DNA molecules, while TPM revealed the behavior of the DNA molecules. In the TPM experiments, a tiny plastic bead only a millionth of inch in diameter was attached to the end of a DNA molecule. By computer analysis of the bead movements seen in a microscope, the scientists were able to monitor the DNA as it looped and unlooped, revealing the details of the molecule's behavior.

But in addition to these sophisticated techniques, the researchers found a simple yet ingenious way to visualize just how the protein bent and twisted DNA: by creating three-dimensional models of the DNA loops using binder clips and tape. That simple trick helped the scientists determine which models were possible and which were unlikely.

"What we demonstrated in this paper is that, contrary to what many scientists thought, the structure of the protein is flexible and can take on different shapes, helping to minimize DNA bending or twisting in loops, and thus, maximize stable gene regulation," explained Wong's Ph.D. advisor, biochemistry professor Jeff Gelles. "We believe the protein has the ability to change its shape to accommodate different sized loops and different amounts of DNA, helping cells maintain genes in a switched on or switched off state."

"We think it is possible that the characteristics of this genetic switch are examples of a general phenomenon that helps explain gene regulation," said Gelles. Poor gene regulation is implicated in many diseases and cancers, and understanding how it works in even a simple bacterium may pave the way for the development of antibiotics.

"The key is that the protein can change shape "on the fly" to accommodate different kinds of loops, or different spacing between different parts of the DNA. This is the way that the protein may have evolved to make gene regulation more reliable," said Gelles.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Brandeis DNA DNA molecules E.coli Regulation behavior loop molecular gymnastics single molecule technique twist

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>