Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequences Capture the Code of the Common Cold

16.02.2009
In an effort to confront our most familiar malady, scientists have deciphered the instruction manual for the common cold.

Writing last week (Feb. 12) in the journal Science, a multi-institutional team of researchers reports the sequences for all of the 99 known strains of cold virus, nature’s most ubiquitous human pathogen. The feat exposes, in precise detail, all of the molecular features of the many variations of the virus responsible for the common cold, the inescapable ailment that makes us all sneeze, cough and sniffle with regularity.

Conducted by teams at the University of Maryland School of Medicine, the University of Wisconsin-Madison and the J. Craig Venter Institute, the work to sequence and analyze the cold virus genomes lays a foundation for understanding the virus, its evolution and three-dimensional structure and, most importantly, for exposing vulnerabilities that could lead to the first effective cold remedies.

“We’ve had bits and pieces of these things for a long time,” says Ann Palmenberg, of UW-Madison’s Institute for Molecular Virology and the lead author of the new study. “Now, we have the full genome sequences and we can put them into evolutionary perspective.”

As its name implies, the common cold is an inescapable, highly contagious pathogen. Humans are constantly exposed to cold viruses, and each year adults may endure two to four infections, while schoolchildren can catch as many as 10 colds.

“We know a lot about the common cold virus,” Palmenberg explains, “but we didn’t know how their genomes encoded all that information. Now we do, and all kinds of new things are falling out.”

The genetic sequence of an organism is, in essence, a blueprint that carries all the necessary information for life. It reveals at the most basic level how an organism is constructed and can help scientists look back in time, assemble a family tree and see how a plant, animal or microbe came to be. With pathogens such as viruses, it can also be used to help predict the potential virulence of new emerging agents of disease.

A sequenced genome can also show an organism’s vulnerabilities. In the case of the cold virus, for example, the sequenced genomes are showing which receptors on cells the viruses bind to, information that can be used to design drugs that could potentially help prevent or mediate infection as viruses require access to host cells to do their dirty work and make new viruses.

“This gives us the molecular basis for drug activity,” says Palmenberg. “We can predict which drugs can take them out.”

Stephen B. Liggett, the new study’s senior author and a professor of medicine and physiology at the University of Maryland School of Medicine, notes that the relative paucity of information about the genetic composition of the many strains of cold virus has slowed the development of effective drugs to prevent infection, medicine that can be critically important for some populations.

“We generally think of colds as a nuisance, but they can be debilitating in the very young and in older individuals, and can trigger asthma attacks at any age,” says Liggett, a pulmonologist and molecular geneticist. The new sequences, he says, may help science understand the etiology of asthma as recent studies suggest rhinovirus infection in children can reprogram the immune system to develop asthma by adolescence.

The newly sequenced viruses also show, says Palmenberg, why it is unlikely we will ever have an effective, all-purpose cold vaccine: The existing reservoir of viruses worldwide is huge and, according to the new study, they have a tendency to swap genetic sequences when cells are infected by more than one virus, a phenomenon that can lead to new virus strains and clinical manifestations.

“Having sequenced the complete genomes of these things we now know you can be infected by more than one virus at a time and that they can recombine (their genes),” Palmenberg explains. “That’s why we’ll never have a vaccine for the common cold. Nature is very efficient at putting different kinds of paint on the viruses.”

The ability of different cold virus strains to swap genes and make entirely new strains was thought to be impossible, notes Claire M. Fraser-Liggett, a co-author of the new study and director of the Institute for Genome Sciences and professor of medicine and microbiology at the University of Maryland School of Medicine. “There is the possibility that this could lead to the emergence of a new rhinovirus strain with fairly dramatic properties,” says Fraser-Liggett.

However, with cold virus sequences in hand, as well as some idea of how they exchange genetic information, it may be possible to predict the pathogenic potential of a virus and devise antiviral agents to thwart infection.

The sequenced cold viruses, which were collected from human noses worldwide, fall primarily into two broad species categories or serotypes of human rhinovirus, types A and B. The new work is timely as it presents a framework for understanding yet another newly described species of rhinovirus known as C, whose strains are less common, but far more virulent, capable of infecting cells deep in the lungs.

The new study was funded by the University of Maryland School of Medicine and the National Institutes of Health.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>