Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover molecular defect involved in hearing loss

15.05.2009
Finding may lead to better understanding of how body responds to mechanical stimuli

Scientists from The Scripps Research Institute have elucidated the action of a protein, harmonin, which is involved in the mechanics of hearing. This finding sheds new light on the workings of mechanotransduction, the process by which cells convert mechanical stimuli into electrical activity.

Defects in mechanotransduction genes can cause devastating diseases, such as Usher's syndrome, which is characterized by deafness, gradual vision loss, and kidney disease, which can lead to kidney failure.

The research, led by Scripps Research Professor Ulrich Mueller, was published in the May 14, 2009 issue of the journal Neuron.

"We're constantly confronted with mechanical signals of many different kinds and we have sensors all over our bodies that respond to those signals," Mueller says. "For example, mechanosensors in the muscles control posture, while those in skin allow us to feel touch. Though many of our other senses, such as taste and smell, are well understood, mechanosensory perception is a world about which we know next to nothing."

By gaining a better appreciation of the molecular mechanics of hearing, scientists can learn a great deal about the workings of similar types of body processes and the defects in these processes that can cause disease.

Hearing: An Exquisite Molecular Dance

Sound starts as waves of mechanical vibrations that travel through the air to the ear by compressing air molecules. The waves first hit the outer ear, then travel down the ear canal into the middle ear before striking the eardrum. The vibrating eardrum moves a set of delicate bones that communicate with a fluid-filled spiral structure in the inner ear, the cochlea. Inside the cochlea are specialized "hair cells" lined with symmetric arrays of stereocilia – mechanosensing organelles that respond to fluid motion or fluid pressure changes. The movement of the fluid inside the cochlea causes the stereocilia, in turn, to move.

When sterocilia are deflected, molecular complexes called "tip links," which connect the tips of stereocilia, transmit physical force to the gated ion channels that are attached to them. The opening of these ion channels, which are monitored by sensory neurons, communicate the electrical signals to neurons in the brain, enabling hearing. In Usher syndrome and some other sensory neuronal diseases that cause deafness, the symmetry of the stereocilia – and the process of mechanotransduction – is disrupted, resulting in deafness.

"It has been known for some time that defects in the hair cells make people deaf, but no one knew why – it was thought that perhaps synapses in the hair cells somehow degenerate or the cells don't develop normally," Mueller says. "The idea that the hair cells' basic function as mechanotransducers were impaired as a result of molecular defects has never been shown before."

Building on Earlier Research

In part because stereocilia are extremely small, scarce, and difficult to handle, the molecules that make up the tip link remained elusive until 2007, when Mueller and his colleagues identified cadherin 23 and protocadherin 15 as the two proteins responsible for opening the ion channels. They also showed that cadherin 23 formed a complex with another protein, myosin 1c, which helped close the channel.

"Cadherin 23 and protocadherin 15 were two of the first known components of any mechanotransduction machinery of sensory cells in vertebrates," Mueller says. "Having these two components, we then went looking for others and found harmonin, which localizes to the tip link where cadherin 23 is also localized, and which we now know is required for mechanotransduction."

Having identified harmonin as yet another molecule involved in mechanotransduction, scientists may be able to move a little closer to addressing a basic science puzzle: How do biological systems build gating systems that act as mechanical devices, almost like switches? Similar switches are present in almost every cell in the body and are the gatekeepers that let ions flow in and out of a cell. Any given cell might have hundreds or thousands of channels. The right stimulus can throw a channel open, allowing ions to pass through; the surge of ions across the cell membrane generates tiny electrical currents that enable a multitude of bodily functions.

"Many different diseases are related to mechanical phenomena," Mueller says. "Understanding the components of this machinery may help shed light on many of them, leading ultimately to new treatments."

The first authors of the paper, "Harmonin (protein) mutations cause mechanotransduction defects in cochlear hair cells," are Nicolas Grillet, Wei Xiong, and Anna Reynolds of Scripps Research. Additional authors include Takashi Sato and Bechar Kachar of the National Institute of Deafness and other Communication Disorders, National Institutes of Health (NIH); Conception Lillo and David Williams of the University of California, Los Angeles, School of Medicine; Rachel Dumont and Peter Gillespie of the Oregon Health & Science University; and Piotr Kazmierczak, Edith Hintermann, Anna Sczaniecka, and Martin Schwander of Scripps Research.

The work was funded by the NIH, the Skaggs Institute for Chemical Biology, a Jules and Doris Stein RPB professorship, a C.J. Martin fellowship NHMRC (Australia), and a fellowship from the Bruce Ford and Anne Smith Brady Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>