Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover molecular defect involved in hearing loss

15.05.2009
Finding may lead to better understanding of how body responds to mechanical stimuli

Scientists from The Scripps Research Institute have elucidated the action of a protein, harmonin, which is involved in the mechanics of hearing. This finding sheds new light on the workings of mechanotransduction, the process by which cells convert mechanical stimuli into electrical activity.

Defects in mechanotransduction genes can cause devastating diseases, such as Usher's syndrome, which is characterized by deafness, gradual vision loss, and kidney disease, which can lead to kidney failure.

The research, led by Scripps Research Professor Ulrich Mueller, was published in the May 14, 2009 issue of the journal Neuron.

"We're constantly confronted with mechanical signals of many different kinds and we have sensors all over our bodies that respond to those signals," Mueller says. "For example, mechanosensors in the muscles control posture, while those in skin allow us to feel touch. Though many of our other senses, such as taste and smell, are well understood, mechanosensory perception is a world about which we know next to nothing."

By gaining a better appreciation of the molecular mechanics of hearing, scientists can learn a great deal about the workings of similar types of body processes and the defects in these processes that can cause disease.

Hearing: An Exquisite Molecular Dance

Sound starts as waves of mechanical vibrations that travel through the air to the ear by compressing air molecules. The waves first hit the outer ear, then travel down the ear canal into the middle ear before striking the eardrum. The vibrating eardrum moves a set of delicate bones that communicate with a fluid-filled spiral structure in the inner ear, the cochlea. Inside the cochlea are specialized "hair cells" lined with symmetric arrays of stereocilia – mechanosensing organelles that respond to fluid motion or fluid pressure changes. The movement of the fluid inside the cochlea causes the stereocilia, in turn, to move.

When sterocilia are deflected, molecular complexes called "tip links," which connect the tips of stereocilia, transmit physical force to the gated ion channels that are attached to them. The opening of these ion channels, which are monitored by sensory neurons, communicate the electrical signals to neurons in the brain, enabling hearing. In Usher syndrome and some other sensory neuronal diseases that cause deafness, the symmetry of the stereocilia – and the process of mechanotransduction – is disrupted, resulting in deafness.

"It has been known for some time that defects in the hair cells make people deaf, but no one knew why – it was thought that perhaps synapses in the hair cells somehow degenerate or the cells don't develop normally," Mueller says. "The idea that the hair cells' basic function as mechanotransducers were impaired as a result of molecular defects has never been shown before."

Building on Earlier Research

In part because stereocilia are extremely small, scarce, and difficult to handle, the molecules that make up the tip link remained elusive until 2007, when Mueller and his colleagues identified cadherin 23 and protocadherin 15 as the two proteins responsible for opening the ion channels. They also showed that cadherin 23 formed a complex with another protein, myosin 1c, which helped close the channel.

"Cadherin 23 and protocadherin 15 were two of the first known components of any mechanotransduction machinery of sensory cells in vertebrates," Mueller says. "Having these two components, we then went looking for others and found harmonin, which localizes to the tip link where cadherin 23 is also localized, and which we now know is required for mechanotransduction."

Having identified harmonin as yet another molecule involved in mechanotransduction, scientists may be able to move a little closer to addressing a basic science puzzle: How do biological systems build gating systems that act as mechanical devices, almost like switches? Similar switches are present in almost every cell in the body and are the gatekeepers that let ions flow in and out of a cell. Any given cell might have hundreds or thousands of channels. The right stimulus can throw a channel open, allowing ions to pass through; the surge of ions across the cell membrane generates tiny electrical currents that enable a multitude of bodily functions.

"Many different diseases are related to mechanical phenomena," Mueller says. "Understanding the components of this machinery may help shed light on many of them, leading ultimately to new treatments."

The first authors of the paper, "Harmonin (protein) mutations cause mechanotransduction defects in cochlear hair cells," are Nicolas Grillet, Wei Xiong, and Anna Reynolds of Scripps Research. Additional authors include Takashi Sato and Bechar Kachar of the National Institute of Deafness and other Communication Disorders, National Institutes of Health (NIH); Conception Lillo and David Williams of the University of California, Los Angeles, School of Medicine; Rachel Dumont and Peter Gillespie of the Oregon Health & Science University; and Piotr Kazmierczak, Edith Hintermann, Anna Sczaniecka, and Martin Schwander of Scripps Research.

The work was funded by the NIH, the Skaggs Institute for Chemical Biology, a Jules and Doris Stein RPB professorship, a C.J. Martin fellowship NHMRC (Australia), and a fellowship from the Bruce Ford and Anne Smith Brady Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>