Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover molecular defect involved in hearing loss

15.05.2009
Finding may lead to better understanding of how body responds to mechanical stimuli

Scientists from The Scripps Research Institute have elucidated the action of a protein, harmonin, which is involved in the mechanics of hearing. This finding sheds new light on the workings of mechanotransduction, the process by which cells convert mechanical stimuli into electrical activity.

Defects in mechanotransduction genes can cause devastating diseases, such as Usher's syndrome, which is characterized by deafness, gradual vision loss, and kidney disease, which can lead to kidney failure.

The research, led by Scripps Research Professor Ulrich Mueller, was published in the May 14, 2009 issue of the journal Neuron.

"We're constantly confronted with mechanical signals of many different kinds and we have sensors all over our bodies that respond to those signals," Mueller says. "For example, mechanosensors in the muscles control posture, while those in skin allow us to feel touch. Though many of our other senses, such as taste and smell, are well understood, mechanosensory perception is a world about which we know next to nothing."

By gaining a better appreciation of the molecular mechanics of hearing, scientists can learn a great deal about the workings of similar types of body processes and the defects in these processes that can cause disease.

Hearing: An Exquisite Molecular Dance

Sound starts as waves of mechanical vibrations that travel through the air to the ear by compressing air molecules. The waves first hit the outer ear, then travel down the ear canal into the middle ear before striking the eardrum. The vibrating eardrum moves a set of delicate bones that communicate with a fluid-filled spiral structure in the inner ear, the cochlea. Inside the cochlea are specialized "hair cells" lined with symmetric arrays of stereocilia – mechanosensing organelles that respond to fluid motion or fluid pressure changes. The movement of the fluid inside the cochlea causes the stereocilia, in turn, to move.

When sterocilia are deflected, molecular complexes called "tip links," which connect the tips of stereocilia, transmit physical force to the gated ion channels that are attached to them. The opening of these ion channels, which are monitored by sensory neurons, communicate the electrical signals to neurons in the brain, enabling hearing. In Usher syndrome and some other sensory neuronal diseases that cause deafness, the symmetry of the stereocilia – and the process of mechanotransduction – is disrupted, resulting in deafness.

"It has been known for some time that defects in the hair cells make people deaf, but no one knew why – it was thought that perhaps synapses in the hair cells somehow degenerate or the cells don't develop normally," Mueller says. "The idea that the hair cells' basic function as mechanotransducers were impaired as a result of molecular defects has never been shown before."

Building on Earlier Research

In part because stereocilia are extremely small, scarce, and difficult to handle, the molecules that make up the tip link remained elusive until 2007, when Mueller and his colleagues identified cadherin 23 and protocadherin 15 as the two proteins responsible for opening the ion channels. They also showed that cadherin 23 formed a complex with another protein, myosin 1c, which helped close the channel.

"Cadherin 23 and protocadherin 15 were two of the first known components of any mechanotransduction machinery of sensory cells in vertebrates," Mueller says. "Having these two components, we then went looking for others and found harmonin, which localizes to the tip link where cadherin 23 is also localized, and which we now know is required for mechanotransduction."

Having identified harmonin as yet another molecule involved in mechanotransduction, scientists may be able to move a little closer to addressing a basic science puzzle: How do biological systems build gating systems that act as mechanical devices, almost like switches? Similar switches are present in almost every cell in the body and are the gatekeepers that let ions flow in and out of a cell. Any given cell might have hundreds or thousands of channels. The right stimulus can throw a channel open, allowing ions to pass through; the surge of ions across the cell membrane generates tiny electrical currents that enable a multitude of bodily functions.

"Many different diseases are related to mechanical phenomena," Mueller says. "Understanding the components of this machinery may help shed light on many of them, leading ultimately to new treatments."

The first authors of the paper, "Harmonin (protein) mutations cause mechanotransduction defects in cochlear hair cells," are Nicolas Grillet, Wei Xiong, and Anna Reynolds of Scripps Research. Additional authors include Takashi Sato and Bechar Kachar of the National Institute of Deafness and other Communication Disorders, National Institutes of Health (NIH); Conception Lillo and David Williams of the University of California, Los Angeles, School of Medicine; Rachel Dumont and Peter Gillespie of the Oregon Health & Science University; and Piotr Kazmierczak, Edith Hintermann, Anna Sczaniecka, and Martin Schwander of Scripps Research.

The work was funded by the NIH, the Skaggs Institute for Chemical Biology, a Jules and Doris Stein RPB professorship, a C.J. Martin fellowship NHMRC (Australia), and a fellowship from the Bruce Ford and Anne Smith Brady Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>