Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Study Shows MicroRNAs Can Trigger Lymphomas

09.08.2013
A small group of immune-regulating molecules, when overproduced even moderately, can trigger the blood cancers known as lymphomas, according to a new study led by scientists from The Scripps Research Institute (TSRI).

The six “microRNA” molecules were already known to be overproduced in lymphomas and in many other human cancers, but no one had demonstrated that they can be the prime cause of such cancers—until now. The new study also identified the major biological pathways through which these microRNAs ignite and maintain cancerous growth.

“We were able to show how this microRNA cluster can be the main driver of cancer, and so we now can start to think about therapies to combat its effects,” said TSRI Assistant Professor Changchun Xiao. Xiao was the senior investigator for the study, which appeared this week in an advance online version of the EMBO Journal, a publication of the European Molecular Biology Organization.

‘Dimmer Switches’

Discovered only in the 1990s, microRNAs are short molecules that work within virtually all animal and plant cells. Typically each one functions as a “dimmer switch” for one or more genes; it binds to the transcripts of those genes and effectively keeps them from being translated into proteins. In this way microRNAs can regulate a wide variety of cellular processes.

The focus of the new study was a cluster of six microRNAs known as miR-17~92, encoded by a single gene on chromosome 13. Studies of miR-17~92, including one from Xiao’s lab earlier this year, have shown that it controls various immune-related and developmental processes, depending on the type of cell in which it is expressed.

But the miR-17~92 cluster is best known as a suspected cause of cancers, so much so that it has been dubbed “oncomir-1.” Since 2005, scientists have found the cluster to be overproduced in lymphomas, leukemias, brain cancers, breast cancers, prostate cancers and other tumor types. It appears to play an especially prominent role in lymphomas. In a study reported last year, National Cancer Institute researchers found a drastic overexpression of the miR-17~92 cluster in every tumor they sampled from patients with a common type of non-Hodgkin’s lymphoma called Burkitt lymphoma.

Researchers have found evidence that this overexpression of miR-17~92 isn’t merely an incidental result of cancerous change in cells; it also works to speed up cancerous growth. “What hasn’t been known is whether miR-17~92 can be the primary trigger of such cancers,” said Xiao.

Identifying a Primary Trigger for Cancer

In the new study, he and his colleagues demonstrated that it can be. The project started with a colony of genetically engineered mice that Xiao established several years ago, while doing postdoctoral research in the laboratory of renowned immunologist Klaus Rajewsky at Harvard Medical School. “The mice contain an artificial gene segment that we can activate to overproduce miR-17~92 in any chosen cell type,” explained Xiao. In this case, the overproduction occurs only in antibody-producing immune cells called B cells—the same cells from which Burkitt lymphoma originates.

After moving to TSRI to set up his own laboratory in 2008, Xiao expanded this transgenic mouse colony and began to gather data on it. “We found that 80 percent of these mice develop lymphomas within one year,” said Hyun-Yong Jin, a graduate student in the Xiao laboratory who was a lead author of the new study.

“It was striking that this very high rate of lymphoma came from only a three-to-fivefold overexpression of miR-17~92 in B cells, whereas human Burkitt lymphomas typically show more than tenfold overexpression,” Xiao said.

Having established that miR-17~92 overexpression can powerfully trigger B cell lymphomas, Xiao and his colleagues looked at this microRNA cluster’s role in a standard mouse model of Burkitt lymphoma. The B cells of these mice are engineered to overexpress a cancer-inducing “oncogene” called myc, whose hyperactivity—a characteristic of human Burkitt lymphoma cases—triggers a number of abnormalities, including the overproduction of miR-17~92.

The miR-17~92 overproduction turned out to be crucial for the development of these lymphomas. “Deleting miR-17~92 from the B cells of these mice significantly delayed the development of lymphomas and extended the mice’s survival,” said Maoyi Lai, a research associate in the Xiao laboratory who was a lead author of the study with Hiroyo Oda, a research associate in the Xiao laboratory during the study and now a member of the National Center for Global Health and Medicine in Chiba, Japan. “Looking more closely, we found that the lymphomas that did develop in these mice originated only from B cells in which miR-17~92 had managed to escape deletion and was still being overproduced.”

Taking Off the Brakes

The next step was to investigate how miR-17~92 triggers cancer so powerfully. Using a new technique for finding the binding sites of microRNAs on messenger RNAs, Xiao’s collaborator Bryan R. Cullen and colleagues at the Duke University School of Medicine identified hundreds of genes that miR-17~92 works to suppress. A large fraction of these turned out to be genes that normally keep the brakes on cell growth and survival programs. By suppressing these braking genes, miR-17~92 ends up strongly promoting cell growth and survival. “It affects so many important pathways that even a modest miR-17~92 overexpression apparently moves the cell from a normal growth and survival mode into the cancerous state,” Xiao said.

Xiao’s team demonstrated the importance of two of these growth/survival pathways by injecting chemical inhibitors of the pathways into mice with miR-17~92-driven lymphomas. “Each inhibitor shrank the tumors and prolonged mouse survival,” said Xiao. “We’re now studying the effect of combining inhibitors of these miR-17~92-driven cancer pathways and possibly targeting miR-17~92 microRNAs directly.”

Contributors to the study, “MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways,” included Bryan R. Cullen and his postdoctoral fellow Rebecca L. Skalsky at Duke University School of Medicine; Klaus Rajewsky of Harvard Medical School (now at the Max Delbrück Center for Molecular Medicine in Berlin); Kelly Bethel of Scripps Clinic in La Jolla, CA, who performed the pathology studies of mouse lymphomas; and Jovan Shepherd, Seung Goo Kang, Wen-Hsien Liu and Mohsen Sabouri-Ghomi of the Xiao laboratory at TSRI. For more information on the paper, see http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2013178a.html

The study was funded by the PEW Charitable Trusts, the Cancer Research Institute, and the National Institutes of Health (R01 AI067968, R01 AI087634 and RC1 CA146299).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>