Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use X-rays to Look at How DNA Protects Itself from UV Light

24.06.2014

SLAC Research Reveals Rapid DNA Changes that Act as Molecular Sunscreen

The molecular building blocks that make up DNA absorb ultraviolet light so strongly that sunlight should deactivate them – yet it does not. Now scientists have made detailed observations of a “relaxation response” that protects these molecules, and the genetic information they encode, from UV damage.


Thymine – the molecule in the foreground – is one of the four basic building blocks that make up the double helix of DNA. It’s such a strong absorber of ultraviolet light that the UV in sunlight should deactivate it, yet this does not happen. In a study reported in Nature Communications, researchers used an X-ray laser at SLAC National Accelerator Laboratory to make detailed observations of a “relaxation response” that protects these molecules, and the genetic information they encode, from UV damage. (Illustration by Greg Stewart/SLAC)

The experiment at the Department of Energy’s SLAC National Accelerator Laboratory focused on thymine, one of four DNA building blocks. Researchers hit thymine with a short pulse of ultraviolet light and used a powerful X-ray laser to watch the molecule’s response: A single chemical bond stretched and snapped back into place within 200 quadrillionths of a second, setting off a wave of vibrations that harmlessly dissipated the destructive UV energy.

The international research team reported the results June 23 in Nature Communications.

... more about:
»Accelerator »DNA »LCLS »Laboratory »SLAC »X-ray »X-rays »energy »thymine

While protecting the genetic information encoded in DNA is vitally important, the significance of this result goes far beyond DNA chemistry, said Philip Bucksbaum, director of the Stanford PULSE Institute and a co-author of the report.

“The new tool the team developed for this study provides a new window on the motion of electrons that control all of chemistry,” he said. “We think this will enhance the value and impact of X-ray free-electron lasers for important problems in biology, chemistry and physics.”

Light Becomes Heat

Researchers had noticed years ago that thymine seemed resistant to damage from UV rays in sunlight, which cause sunburn and skin cancer. Theorists proposed that thymine got rid of the UV energy by quickly shifting shape. But they differed on the details, and previous experiments could not resolve what was happening.

The SLAC experiment took place at the Linac Coherent Light Source (LCLS), a DOE Office of Science user facility, whose bright, ultrashort X-ray laser pulses can see changes taking place at the level of individual atoms in quadrillionths of a second.

Scientists turned thymine into a gas and hit it with two pulses of light in rapid succession: first UV, to trigger the protective relaxation response, and then X-rays, to detect and measure the response. 

“As soon as the thymine swallows the light, the energy is funneled as quickly as possible into heat, rather than into making or breaking chemical bonds,” said Markus Guehr, a DOE Early Career Program recipient and senior staff scientist at PULSE who led the study. “It’s like a system of balls connected by springs; when you elongate that one bond between two atoms and let it loose, the whole molecule starts to tremble.”

Ejected Electrons Signal Changes

The X-rays measured the relaxation response indirectly by stripping away some of the innermost electrons from atoms in the thymine molecule. This sets off a process known as Auger decay that ultimately ejects other electrons. The ejected electrons fly into a detector, carrying information about the nature and state of their home atoms.

By comparing the speeds of the ejected electrons before and after thymine was hit with UV, the researchers were able to pinpoint rapid changes in a single carbon-oxygen bond: It stretched when hit with UV light and shortened 200 quadrillionths of a second later, setting off vibrations that continued for billionths of a second.

“This is the first time we’ve been able to distinguish between two fundamental responses in the molecule – movements of the atomic nuclei and changes in the distribution of electrons – and time them within a few quadrillionths of a second,” said the paper’s first author, Brian McFarland, a postdoctoral researcher who has since moved from SLAC to Los Alamos National Laboratory.

Guehr said the team plans more experiments to further explore the protective relaxation response and extend the new method, called time-resolved Auger spectroscopy, into other scientific realms.

In addition to the Stanford PULSE Institute, which is a joint institute of SLAC and Stanford University, the study included researchers from LCLS, Stanford, the University of Perugia in Italy, Lawrence Berkeley National Laboratory, the University of Connecticut, Western Michigan University, the University of Gothenburg in Sweden, and UNIST in South Korea. Parts of the research were carried out at Berkeley Lab’s Advanced Light Source, a DOE Office of Science user facility. The work was funded by the DOE Office of Science, the Swedish Research Council, the Göran Gustafsson Foundation and the Knut and Alice Wallenberg Foundation.

Citation: B. K. McFarland, J. P. Farrell et al., Nature Communications, 23 June 2014 (10.1038/ncomms5235)

Press Office Contact: Andrew Gordon, agordon@slac.stanford.edu, (650) 926-2282

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

The Stanford PULSE Institute is a joint institute of SLAC National Accelerator Laboratory and Stanford University. PULSE seeks to advance the frontiers of ultrafast science, with particular emphasis on research using SLAC's Linac Coherent Light Source (LCLS). For more information, please visit www.stanford.edu/group/pulse_institute.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andrew Gordon | Eurek Alert!
Further information:
https://www6.slac.stanford.edu/news/2014-06-23-scientists-use-x-rays-look-how-dna-protects-itself-uv-light.aspx

Further reports about: Accelerator DNA LCLS Laboratory SLAC X-ray X-rays energy thymine

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>