Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists urge new approaches to plant research

02.07.2012
You’d be amazed at how much you can learn from a plant.
In a paper published this week in the journal Science, a Michigan State University professor and a colleague discuss why if humans are to survive as a species, we must turn more to plants for any number of valuable lessons.

“Metabolism of plants provides humans with fiber, fuel, food and therapeutics,” said Robert Last, an MSU professor of biochemistry and molecular biology. “As the human population grows and nonrenewable energy sources diminish, we need to rely increasingly on plants and to increase the sustainability of agriculture.”

However, Last and co-author Ron Milo of the Weizmann Institute of Science point out that despite decades of plant genetic engineering, there are relatively few types of commercial products originating from this body of work.

“This is in part because we do not understand enough about the vastly complex set of metabolic reactions that plants employ,” Last said. “It’s like designing and building a bridge armed only with satellite images of existing bridges.”

The authors say that perhaps the best approach is to bring together a variety of disciplines – not just plant scientists – to study how plants operate.

They also suggest looking hard at what brought plants to the place they are today – evolution.

“We think that understanding design principles of plant metabolism will be aided by considering how hundreds of millions of years of evolution has led to well-conserved examples of metabolic pathways,” Last said.

One of the amazing aspects of plant metabolism is this: It must continuously strike a balance between evolving to meet an ever-changing environment while maintaining the internal stability needed to carry on life as it knows it.

In addition, the authors point out that plants experiment with specialized (also called secondary) metabolism which can produce novel chemicals that are used to defend against pathogens and herbivores.

“Humans benefit from this ‘arms race’ because some of these compounds have important therapeutic properties,” Last said. “Unfortunately, design principles are not so well studied in these rapidly evolving metabolic processes. Using new approaches, including considering optimality principles, will lead to advances in medicinal chemistry as well as creating more and healthier food.”

Last is Barnett Rosenberg chair of Biochemistry and Molecular Biology and Plant Biology. Co-author Milo is a professor of plant sciences at Israel’s Weizmann Institute of Science.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu
http://news.msu.edu/story/scientists-urge-new-approaches-to-plant-research/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>