Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unveil a molecular mechanism that controls plant growth and development

31.01.2014
Researchers from Spain and the Netherlands reveal how auxin hormone-regulated proteins activate developmental genes in plants

A joint study published in Cell by the teams headed by Miquel Coll at the Institute for Research in Biomedicine (IRB Barcelona) and the Institute of Molecular Biology of CSIC, both in Barcelona, and Dolf Weijers at the University of Wageningen, in the Netherlands, unravels the mystery behind how the plant hormones called auxins activate multiple vital plant functions through various gene transcription factors.


This shows the atomic structure of an ARF/DNA complex. Auxins control the growth and development of plants through ARF

Credit: (Author: R. Boer, IRB/CSIC)

Auxins are plant hormones that control growth and development, that is to say, they determine the size and structure of the plant. Among their many activities, auxins favor cell growth, root initiation, flowering, fruit setting and delay ripening. Auxins have practical applications and are used in agriculture to produce seedless fruit, to prevent fruit drop, and to promote rooting, in addition to being used as herbicides. The biomedical applications of these hormones as anti-tumor agents and to facilitate somatic cell reprogramming (the cells that form tissues) to stem cells are also being investigated.

The effects of auxins in plants was first observed by Darwin in 1881, and since then this hormone has been the focus of many studies. However, although it was known how and where auxin is synthesized in the plant, how it is transported, and the receptors on which it acts, it was unclear how a hormone could trigger such diverse processes.

At the molecular level, the hormone serves to unblock a transcription factor, a DNA-binding protein, which in turn activates or represses a specific group of genes. Some plants have more than 20 distinct auxin-regulated transcription factors. They are called ARFs (Auxin Response Factors) and control the expression of numerous plant genes in function of the task to be undertaken, that is to say, cell growth, flowering, root initiation, leaf growth etc.

Using the Synchrotron Alba, near Barcelona, and the European Synchrotron Radiation Facility, in Grenoble, Dr. Miquel Coll, a structural biologist and his team analyzed the DNA binding mode used by various ARFs. For this purpose, the scientists prepared crystals of complexes of DNA and ARF proteins obtained by Dolf Weijers team in Wageningen, and then shot the crystals with high intensity X-rays in the synchrotron to resolve their atomic structure. The resolution of five 3D structures has revealed why a given transcription factor is capable of activating a single set of genes, while other ARFs that are very similar with only slight differences trigger a distinct set.

"Each ARF recognizes and adapts to a particular DNA sequence through two binding arms or motifs that are barrel-shaped, and this adaptation differs for each ARF," explains Roeland Boer, postdoctoral researcher in Miquel Coll's group at IRB Barcelona, and one of the first authors of the study.

The ARF binding mode to DNA has never been described in bacteria or animals. "It appears to be exclusive to plants, but we cannot rule out that it is present in other kingdoms. Our finding is highly relevant because we have revealed the ultimate effect of a hormone that controls plant development on DNA, that is to say, on genes." says Miquel Coll.

Reference article: Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors
D. Roeland Boer, Alejandra Freire-Rios, Willy van den Berg, Terrens Saaki, Iain W. Manfield, Stefan Kepinski, Irene López-Vidrieo, Jose Manuel Franco, Sacco C. de Vries, Roberto Solano, Dolf Weijers, and Miquel Coll

Cell (2014) http://dx.doi.org/10.1016/j.cell.2013.12.027

More information: Sònia Armengou. Oficina de prensa.Institut de Recerca Biomèdica (IRB). 93 403 72 55/ 618 294 070

armengou@irbbarcelona.org

Sònia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>