Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal structure of bacterial chainmail

11.06.2012
An international team of scientists, funded in the UK by the Biotechnology and Biological Sciences Research Council (BBSRC), has uncovered the structure of the protective protein coat which surrounds many bacteria like a miniature suit of armour.

Their research, which is published today (Sunday 10 June) in Nature, has far ranging consequences in helping us understand how some pathogenic bacteria infect humans and animals, and could help us develop new vaccines.

Until now, scientists have known very little about the structure and function of this coat, which scientists call S-layer, despite the fact that some bacteria invest as much as a third of their total protein production in building it.

The team of scientists from the UK, France and Belgium, were able to image the S-layer of a harmless soil bacterium called Geobacillus stearothermophilus down to the scale of a single atom. They revealed that the individual proteins of the protective layer hook together much like the chainmail of a medieval knight.

Dr Stefan Howorka, of UCL (University College London), led the work in the UK. He explains "These protein coats have remained quite mysterious to scientists even though they are found on a huge variety of bacteria. Using advanced imaging techniques, we have uncovered for the first time the structure of an S-layer in remarkable detail showing that the protein subunits are linked together in a manner resembling a chainmail. This remarkably optimized layer not only provides a tough but flexible coat of armour to protect the bacterium, but is also permeable allowing nutrients and other substances to diffuse in or out."

This chainmail coat supports the shape of bacteria and protects them from environmental hazards. The coat is also thought to be important in allowing many pathogenic bacteria to infect cells, helping germs to stick to and slide into human or animal cells where they can wreak havoc. Other pathogens coat themselves with a protein lattice that makes them invisible to the "radar" of the immune system.

Dr Howorka continues "Now that we have worked out how to obtain the structure of the S-layer in one bacterium, we expect that the structure of the protein coats of other species will soon be revealed. Uncovering the bacterial armour of pathogens like the superbug Clostridium difficile or of Bacillus anthraci, the bacterium responsible for anthrax, is now a high priority for many scientists. This understanding provides a real opportunity to find chinks in the bacterial armour that would allow precise targeting of antibiotics or vaccines against these challenging pathogens."

The remarkable structure of the S-layer coat also holds promise as a carrier for vaccines. By exploiting the ability of these coats to self-assemble from their individual building blocks it should be possible to construct hybrid vaccines that fuse harmless S-layers with bits of proteins from pathogenic bacteria.

Professor Douglas Kell, BBSRC Chief Executive said "This work is a great example of how important it is to study the secrets of how nature fits together at the most minute scale. By revealing how things look we can gain an insight into how they work. Understanding how nature works is going to be crucial in combating many of the great challenges facing society."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

Further reports about: BBSRC building block pathogenic bacteria scientists

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>