Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Read Monkeys’ Inner Thoughts

23.07.2012
Anyone who has looked at the jagged recording of the electrical activity of a single neuron in the brain must have wondered how any useful information could be extracted from such a frazzled signal.

But over the past 30 years, researchers have discovered that clear information can be obtained by decoding the activity of large populations of neurons.

Now, scientists at Washington University in St. Louis, who were decoding brain activity while monkeys reached around an obstacle to touch a target, have come up with two remarkable results.

Their first result was one they had designed their experiment to achieve: they demonstrated that multiple parameters can be embedded in the firing rate of a single neuron and that certain types of parameters are encoded only if they are needed to solve the task at hand.

Their second result, however, was a complete surprise. They discovered that the population vectors could reveal different planning strategies, allowing the scientists, in effect, to read the monkeys’ minds.

By chance, the two monkeys chosen for the study had completely different cognitive styles. One, the scientists said, was a hyperactive type, who kept jumping the gun, and the other was a smooth operator, who waited for the entire setup to be revealed before planning his next move. The difference is clearly visible in their decoded brain activity.

The study was published in the July 19th advance online edition of the journal Science.

All in the task

The standard task for studying voluntary motor control is the “center-out task,” in which a monkey or other subject must move its hand from a central location to targets placed on a circle surrounding the starting position.

To plan the movement, says Daniel Moran, PhD, associate professor of biomedical engineering in the School of Engineering & Applied Science and of neurobiology in the School of Medicine at Washington University in St. Louis, the monkey needs three pieces of information: current hand and target position and the velocity vector that the hand will follow.

In other words, the monkey needs to know where his hand is, what direction it is headed and where he eventually wants ot to go.

A variation of the center-out task with multiple starting positions allows the neural coding for position to be separated from the neural coding for velocity.

By themselves, however, the straight-path, unimpeded reaches in this task don’t let the neural coding for velocity to be distinguished from the neural coding for target position, because these two parameters are always correlated. The initial velocity of the hand and the target are always in the same direction.

To solve this problem and isolate target position from movement direction, doctoral student Thomas Pearce designed a novel obstacle-avoidance task to be done in addition to the center-out task.

Crucially, in one-third of the obstacle-avoidance trials, either no obstacle appeared or the obstacle didn’t block the monkey’s path. In either case, the monkey could move directly to the target once he got the “go” cue.

The population vector corresponding to target position showed up during the third hold of the novel task, but only if there was an obstacle. If an obstacle appeared and the monkey had to move its hand in a curved trajectory to reach the target, the population vector lengthened and pointed at the target. If no obstacle appeared and the monkey could move directly to the target, the population vector was insignificant.

In other words, the monkeys were encoding the position of the target only when it did not lie along a direct path from the starting position and they had to keep its position “in mind” as they initially moved in the “wrong” direction.

“It’s all,” Moran says, “in the design of the task.”

And then some magic happens

Pearce’s initial approach to analyzing the data from the experiment was the standard one of combining the data from the two monkeys to get a cleaner picture.

“It wasn’t working,” Pearce says, “and I was frustrated because I couldn’t figure out why the data looked so inconsistent. So I separated the data by monkey, and then I could see, wow, they’re very different. They’re approaching this task differently and that’s kind of cool.”

The difference between the monkey’s’ styles showed up during the second hold. At this point in the task, the target was visible, but the obstacle had not yet appeared.

The hyperactive monkey, called monkey H, couldn’t wait. His population vector during that hold showed that he was poised for a direct reach to the target. When the obstacle was then revealed, the population vector shortened and rotated to the direction he would need to move to avoid the obstacle.

The smooth operator, monkey G, in the meantime, idled through the second hold, waiting patiently for the obstacle to appear. Only when it was revealed did he begin to plan the direction he would move to avoid the obstacle.

Because he didn’t have to correct course, monkey G’s strategy was faster, so what advantage was it to monkey H to jump the gun? In the minority of trials where no obstacle appeared, monkey H approached the target more accurately than monkey G. Maybe monkey H is just cognitively adapted to a Whac-A-Mole world. And monkey G, when caught without a plan, was at a disadvantage.

Working with the monkeys, the scientists had been aware that they had very different personalities, but they had no idea this difference would show up in their neural recordings.

“That’s what makes this really interesting,” Moran says.

Diana Lutz | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>