Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Read Monkeys’ Inner Thoughts

23.07.2012
Anyone who has looked at the jagged recording of the electrical activity of a single neuron in the brain must have wondered how any useful information could be extracted from such a frazzled signal.

But over the past 30 years, researchers have discovered that clear information can be obtained by decoding the activity of large populations of neurons.

Now, scientists at Washington University in St. Louis, who were decoding brain activity while monkeys reached around an obstacle to touch a target, have come up with two remarkable results.

Their first result was one they had designed their experiment to achieve: they demonstrated that multiple parameters can be embedded in the firing rate of a single neuron and that certain types of parameters are encoded only if they are needed to solve the task at hand.

Their second result, however, was a complete surprise. They discovered that the population vectors could reveal different planning strategies, allowing the scientists, in effect, to read the monkeys’ minds.

By chance, the two monkeys chosen for the study had completely different cognitive styles. One, the scientists said, was a hyperactive type, who kept jumping the gun, and the other was a smooth operator, who waited for the entire setup to be revealed before planning his next move. The difference is clearly visible in their decoded brain activity.

The study was published in the July 19th advance online edition of the journal Science.

All in the task

The standard task for studying voluntary motor control is the “center-out task,” in which a monkey or other subject must move its hand from a central location to targets placed on a circle surrounding the starting position.

To plan the movement, says Daniel Moran, PhD, associate professor of biomedical engineering in the School of Engineering & Applied Science and of neurobiology in the School of Medicine at Washington University in St. Louis, the monkey needs three pieces of information: current hand and target position and the velocity vector that the hand will follow.

In other words, the monkey needs to know where his hand is, what direction it is headed and where he eventually wants ot to go.

A variation of the center-out task with multiple starting positions allows the neural coding for position to be separated from the neural coding for velocity.

By themselves, however, the straight-path, unimpeded reaches in this task don’t let the neural coding for velocity to be distinguished from the neural coding for target position, because these two parameters are always correlated. The initial velocity of the hand and the target are always in the same direction.

To solve this problem and isolate target position from movement direction, doctoral student Thomas Pearce designed a novel obstacle-avoidance task to be done in addition to the center-out task.

Crucially, in one-third of the obstacle-avoidance trials, either no obstacle appeared or the obstacle didn’t block the monkey’s path. In either case, the monkey could move directly to the target once he got the “go” cue.

The population vector corresponding to target position showed up during the third hold of the novel task, but only if there was an obstacle. If an obstacle appeared and the monkey had to move its hand in a curved trajectory to reach the target, the population vector lengthened and pointed at the target. If no obstacle appeared and the monkey could move directly to the target, the population vector was insignificant.

In other words, the monkeys were encoding the position of the target only when it did not lie along a direct path from the starting position and they had to keep its position “in mind” as they initially moved in the “wrong” direction.

“It’s all,” Moran says, “in the design of the task.”

And then some magic happens

Pearce’s initial approach to analyzing the data from the experiment was the standard one of combining the data from the two monkeys to get a cleaner picture.

“It wasn’t working,” Pearce says, “and I was frustrated because I couldn’t figure out why the data looked so inconsistent. So I separated the data by monkey, and then I could see, wow, they’re very different. They’re approaching this task differently and that’s kind of cool.”

The difference between the monkey’s’ styles showed up during the second hold. At this point in the task, the target was visible, but the obstacle had not yet appeared.

The hyperactive monkey, called monkey H, couldn’t wait. His population vector during that hold showed that he was poised for a direct reach to the target. When the obstacle was then revealed, the population vector shortened and rotated to the direction he would need to move to avoid the obstacle.

The smooth operator, monkey G, in the meantime, idled through the second hold, waiting patiently for the obstacle to appear. Only when it was revealed did he begin to plan the direction he would move to avoid the obstacle.

Because he didn’t have to correct course, monkey G’s strategy was faster, so what advantage was it to monkey H to jump the gun? In the minority of trials where no obstacle appeared, monkey H approached the target more accurately than monkey G. Maybe monkey H is just cognitively adapted to a Whac-A-Mole world. And monkey G, when caught without a plan, was at a disadvantage.

Working with the monkeys, the scientists had been aware that they had very different personalities, but they had no idea this difference would show up in their neural recordings.

“That’s what makes this really interesting,” Moran says.

Diana Lutz | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>