Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Link DNA “End-Caps” Length to Diabetes Risk --New Role for Short Telomeres

New evidence has emerged from studies in mice that short telomeres or “caps” at the ends of chromosomes may predispose people to age-related diabetes, according to Johns Hopkins scientists.

Telomeres are repetitive sequences of DNA that protect the ends of chromosomes, and they normally shorten with age, much like the caps that protect the end of shoelaces. As telomeres shorten, cells lose the ability to divide normally and eventually die. Telomere shortening has been linked to cancer, lung disease, and other age-related illnesses. Diabetes, also a disease of aging, affects as many as one in four adults over the age of 60.

The Johns Hopkins research, described in the March 10 issue of PLoS One, arose from scientist Mary Armanios’ observation that diabetes seems to occur more often in patients with dyskeratosis congenita, a rare, inherited disease caused by short telomeres. Patients with dyskeratosis congenita often have premature hair graying and are prone to develop early organ failure.

“Dyskeratosis congenita is a disease that essentially makes people age prematurely. We knew that the incidence of diabetes increases with age, so we thought there may be a link between telomeres and diabetes,” says Armanios, assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

Armanios studied mice with short telomeres and their insulin-producing beta cells. Human diabetics lack sufficient insulin production and have cells resistant to its efficient use, causing disruption to the regulation of sugar levels in the blood. Armanios found that despite the presence of plentiful, healthy-looking beta cells in the mice, they had higher blood sugar levels and secreted half as much insulin as the controls. “This mimics early stages of diabetes in humans where cells have trouble secreting insulin in response to sugar stimulus,” says Armanios.

“Many of the steps of insulin secretion in these mice, from mitochondrial energy production to calcium signaling, functioned at half their normal levels,” says Armanios.

In beta cells from mice with short telomeres, they found disregulation of p16, a gene linked to aging and diabetes. No such mistakes were found in the controls.

In addition, many of the gene pathways essential for insulin secretion in beta cells, including pathways that control calcium signaling, were altered in beta cells from mice with short telomeres.

Armanios says that some studies have suggested that diabetic patients may have short telomeres, but it was not clear whether this contributes to diabetes risk or is a consequence of the disease.

“Age is the most important risk factor for diabetes, and we also know that family heredity plays a very important role. Telomere length is an inherited factor and may make people more prone to develop diabetes,” says Armanios.

Based on this work, Armanios says that telomere length could serve as a biomarker for development of diabetes. Armanios and her colleagues are planning to conduct research to examine whether telomere length can predict the risk of diabetes prospectively.

The research was funded by the National Institutes of Health, a Ruth L. Kirschstein Award, the Maryland Stem Cell Research Fund, Sidney Kimmel Foundation, Doris Duke Charitable Foundation, the Swedish Research Council and the Family Erling-Persson Foundation.

Participants in the research included Nini Guo, Erin M. Parry, Frant Kembou, Naudia Lauder, Mehboob A. Hussain from Johns Hopkins; and Luo-Sheng Li and Per-Olof Berggren from the Karolinska Institutet in Sweden.

Media Contact: Vanessa Wasta

Vanessa Wasta | Newswise Science News
Further information:

Further reports about: Armanios DNA Diabetes Telomere beta cells calcium signaling insulin secretion

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>