Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find missing link between players in the epigenetic code

Over the last two decades, scientists have come to understand that the genetic code held within DNA represents only part of the blueprint of life. The rest comes from specific patterns of chemical tags that overlay the DNA structure, determining how tightly the DNA is packaged and how accessible certain genes are to be switched on or off.

As researchers have uncovered more and more of these "epigenetic" tags, they have begun to wonder how they are all connected. Now, research from the University of North Carolina School of Medicine has established the first link between the two most fundamental epigenetic tags -- histone modification and DNA methylation -- in humans.

Mouse embryonic stem cells (blue, green) lose DNA methylation (red) in the absence of UHRF1.

Credit: Strahl Lab, UNC School of Medicine

The study, which was published Sept. 30, 2012 by the journal Nature Structural & Molecular Biology, implicates a protein called UHRF1 in the maintenance of these epigenetic tags. Because the protein has been found to be defective in cancer, the finding could help scientists understand not only how microscopic chemical changes can ultimately affect the epigenetic landscape but also give clues to the underlying causes of disease and cancer.

"There's always been the suspicion that regions marked by DNA methylation might be connected to other epigenetic tags like histone modifications, and that has even been shown to be true in model organisms like fungus and plants," said senior study author Brian Strahl, PhD, associate professor of biochemistry and biophysics in the UNC School of Medicine and a member of UNC Lineberger Comprehensive Cancer Center. "But no one has been able to make that leap in human cells. It's been controversial in terms of whether or not there's really a connection. We have shown there is."

Strahl, along with his postdoctoral fellow Scott Rothbart, honed in on this discovery by using a highly sophisticated technique developed in his lab known as next generation peptide arrays. First the Strahl lab generated specific types of histone modifications and dotted them on tiny glass slides called "arrays." They then used these "arrays" to see how histone modifications affected the docking of different proteins. One protein – UHRF1 – stood out because it bound a specific histone modification (lysine 9 methylation on histone H3) in cases where others could not.

Strahl and his colleagues focused the rest of their experiments on understanding the role of UHRF1 binding to this histone modification. They found that while other proteins that dock on this epigenetic tag are ejected during a specific phase of the cell cycle, mitosis, UHRF1 sticks around. Importantly, the protein's association with histones throughout the cell cycle appears to be critical to maintaining another epigenetic tag called DNA methylation. The result was surprising because researchers had previously believed that the maintenance of DNA methylation occurred exclusively during a single step of the cell cycle called DNA replication.

"This role of UHRF1 outside of DNA replication is certainly unexpected, but I think it is just another way of making sure we don't lose information about our epigenetic landscape," said Strahl.

The research was funded by the National Institutes of Health and the North Carolina Biotechnology Center.

Study co-authors from UNC were Scott B. Rothbart, PhD, a postdoc in Strahl's lab at UNC; Krzysztof Krajewski, PhD, research assistant professor; and Jorge Y. Martinez, a former student in Strahl's lab.

Tom Hughes | EurekAlert!
Further information:

Further reports about: DNA DNA methylation Medicine UHRF1 UNC cell cycle genetic tag histone modifications human cell

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>