Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the origin of a giant synapse

27.05.2013
How do we locate the spatial position of sounds? Scientists have revealed a mechanism responsible for the creation of giant synapses in the brain that allow us to efficiently process auditory information

Humans and most mammals can determine the spatial origin of sounds with remarkable acuity. We use this ability all the time -- crossing the street; locating an invisible ringing cell phone in a cluttered bedroom. To accomplish this small daily miracle, the brain has developed a circuit that's rapid enough to detect the tiny lag that occurs between the moment the auditory information reaches one of our ears, and the moment it reaches the other.

The mastermind of this circuit is the "Calyx of Held," the largest known synapse in the brain. EPFL scientists have revealed the role that a certain protein plays in initiating the growth of these giant synapses. The discovery, published in Nature Neuroscience, could also help shed light on a number of neuropsychiatric disorders.

Enormous synapses enable faster communication

Ordinarily, neurons have thousands of contact points – known as synapses - with neighboring neurons. Within a given time frame, a neuron has to receive several signals from its neighbors in order to be able to fire its own signal in response. Because of this, information passes from neuron to neuron in a relatively random manner.

In the auditory part of the brain, this is not the case. Synapses often grow to extremely large sizes, and these behemoths are known as "Calyx of Held" synapses. Because they have hundreds of contact points, they are capable of transmitting a signal singlehandedly to a neighboring neuron. "It's almost like peer-to-peer communication between neurons," explains EPFL professor Ralf Schneggenburger, who led the study. The result is that information is processed extremely quickly, in a few fractions of a millisecond, instead of the slower pace of more than 10 milliseconds that occurs in most other neuronal circuits.

Identifying the protein
To isolate the protein responsible for controlling the growth of this gigantic synapse, the scientists had to perform painstaking research. Using methods for analyzing gene expression in mice, they identified several members of the "BMP" family of proteins from among more than 20,000 possible candidates.

To verify that they had truly identified the right protein, the researchers disabled BMP protein receptors in the auditory part of a mouse brain. "The resulting electrophysiological signal of the Calyx of Held was significantly altered," explains Le Xiao, first author on the study. "This would suggest a large anatomical difference."

The scientists then reconstructed the synapses in three dimensions from slices that were observed under an electron microscope. Instead of a single, massive Calyx of Held, which would encompass nearly half the neuron, the 3D image of the neuron clearly shows several, smaller synapses. "This shows that the process involving the BMP protein not only causes that one synapse to grow, but also performs a selection, by eliminating the others," says Schneggenburger.

Synaptic connectivity, the key to many psychiatric puzzles
The impact of this study will go well beyond increasing our understanding of the auditory system. The results suggest that the BMP protein plays an important role in developing connectivity in the brain. Schneggenburger and his colleagues are currently investigating its role elsewhere in the brain. "Some neuropsychiatric disorders, such as schizophrenia and autism, are characterized by the abnormal development of synaptic connectivity in certain key parts of the brain," explains Schneggenburger. By identifying and explaining the role of various proteins in this process, the scientists hope to be able to shed more light on these poorly understood disorders.

Ralf Schneggenburger | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>