Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Devise New Screening Method to Aid RNA Drug Development Research

10.10.2012
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have developed a new method of screening more than three million combinations of interactions between RNA and small molecules to identify the best targets on RNA as well as the most promising potential drug compounds. This novel technology may lead to more efficient drug development.
The study was published in the October 9, 2012 issue of the journal Nature Communications.

RNA has multiple biological functions, including encoding and translating proteins from genes and regulating the amount of protein expressed under various cellular conditions. Recent studies have identified RNA as a “molecular switch” that controls cellular events such as gene expression, making RNA an attractive target for small molecules that serve as chemical genetics probes, analytical tools or potential drugs.
However, to date information on which small molecules bind to which parts (structural motifs) of RNA has been sparse, hampering this promising area of research and development. That’s where the new study comes in.

“For the first time we have been able to probe what types of small molecules would be good lead drugs to target RNA by probing millions of RNA-ligand combinations,” said Matthew Disney, an associate professor at TSRI who authored the study with graduate student Tuan Tran. “In a viral genome, for example, RNA folds such as hairpin loops contribute to disease, but we don’t know which hairpin loops should we focus on. In the study, we were able to define those RNA motifs, including hairpin loops, that bind to small molecules and the types of small molecules that bind to RNA.”

Disney notes that larger, more chemically diverse small molecule libraries could be screened to provide additional ligands with an affinity for RNA recognition, plus additional RNA motifs preferred by small molecules. The new method could be used to create easily accessible small molecule libraries biased towards binding to RNA.

The new technology will also be used in a computer program designed by Disney that brings together information on the interaction between small molecules and RNA with data on the RNA folds present in segments of the human genome that contribute to specific human diseases.

The study, “Identifying the Preferred RNA Motifs and Chemotypes that Interact by Probing Millions of Combinations,” was supported by National Institutes of Health (grant R01 GM079235), the Camille and Henry Dreyfus Foundation and the Research Corporation for Science Advancement. For more information on the study, see http://www.nature.com/ncomms/journal/v3/n10/abs/ncomms2119.html.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>