Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Scientific Analysis Shines a Light on Ötzi the Iceman’s Dark Secrets

10.06.2013
Protein investigation supports brain injury theory and opens up new research possibilities for mummies

After decoding the Iceman’s genetic make-up, a research team from the European Academy of Bolzano/Bozen (EURAC), Saarland University, Kiel University and other partners has now made another major breakthrough in mummy research: using just a pinhead-sized sample of brain tissue from the world-famous glacier corpse, the team was able to extract and analyse proteins to further support the theory that Ötzi suffered some form of brain damage in the final moments of his life.


Iceman Brain Red Blood Cells
Marek Janko, TU Darmstadt

Two dark coloured areas at the back of the Iceman’s cerebrum had first been mentioned back in 2007 during a discussion about the fracture to his skull. Scientists surmised from a CAT scan of his brain that he had received a blow to the forehead during his deadly attack that caused his brain to knock against the back of his head, creating dark spots from the bruising. Till now, this hypothesis had been left unexplored.

In 2010, with the help of computer-controlled endoscopy, two samples of brain tissue the size of a pinhead were extracted from the glacier mummy. This procedure was carried out via two tiny (previously existing) access holes and was thus minimally invasive. Microbiologist Frank Maixner (EURAC, Institute for Mummies and the Iceman) and his fellow scientist Andreas Tholey (Institute for Experimental Medicine, Kiel University) conducted two parallel, independent studies on the tiny bundles of cells. Tholey’s team provided the latest technology used in the study of complex protein mixtures known as “proteomes”. The various analyses were coordinated by Frank Maixner and Andreas Keller.

The protein research revealed a surprising amount of information. Scientists were able to identify numerous brain proteins, as well as proteins from blood cells. Microscopic investigation also confirmed the presence of astonishingly well-preserved neural cell structures and clotted blood cells. On the one hand, this led the scientists to conclude that the recovered samples did indeed come from brain tissue in remarkably good condition (the proteins contained amino acid sequence features specific to Ötzi).

On the other hand, these blood clots in a corpse almost devoid of blood provided further evidence that Ötzi’s brain had possibly suffered bruising shortly before his death. Whether this was due to a blow to the forehead or a fall after being injured by the arrow remains unclear.

The discoveries represent a major breakthrough for the scientists. The research team emphasised that “the use of new protein-analysis methods has enabled us to pioneer this type of protein investigation on the soft tissue of a mummified human, extracting from the tiniest sample a vast quantity of data which in the future may well answer many further questions.” While many DNA samples from mummies are difficult or impossible to analyse because of natural biological decay, one can often still find proteins in tissue samples which allow a closer analysis and provide valuable information, explained Andreas Tholey:

“Proteins are the decisive players in tissues and cells, and they conduct most of the processes which take place in cells. Identification of the proteins is therefore key to understanding the functional potential of a particular tissue. DNA is always constant, regardless of from where it originates in the body, whereas proteins provide precise information about what is happening in specific regions within the body.” Protein analysis of mummified tissue makes an especially valuable contribution to DNA research, Maixner added: “Investigating mummified tissue can be very frustrating. The samples are often damaged or contaminated and do not necessarily yield results, even after several attempts and using a variety of investigative methods. When you think that we have succeeded in identifying actual tissue changes in a human who lived over 5,000 years ago, you can begin to understand how pleased we are as scientists that we persisted with our research after many unsuccessful attempts. It has definitely proved worthwhile!”

The results of this joint study are published in the renowned journal “Cellular and Molecular Life Sciences”. Along with a sample taken from the Iceman´s stomach content, more than a dozen tissue samples from less well preserved mummies from all over the world will be submitted to this new protein-based research method and should provide insights which previously had not been possible.

Laura Defranceschi | idw
Further information:
http://www.eurac.edu

Further reports about: CAT scan DNA Dark Quencher Iceman Protein SECRETS blood cell blood clot brain tissue tissue samples Ötzi

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>