Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk researchers discover that stem cell marker regulates synapse formation

31.01.2011
Among stem cell biologists there are few better-known proteins than nestin, whose very presence in an immature cell identifies it as a "stem cell," such as a neural stem cell. As helpful as this is to researchers, until now no one knew which purpose nestin serves in a cell.

In a study published in the Jan. 30, 2011, advance online edition of Nature Neuroscience, Salk Institute of Biological Studies investigators led by Kuo-Fen Lee, PhD., show that nestin has reason for being in a completely different cell type--muscle tissue. There, it regulates formation of the so-called neuromuscular junction, the contact point between muscle cells and "their" motor neurons.

Knowing this not only deepens our understanding of signaling mechanisms connecting brain to muscle, but could aid future attempts to strengthen those connections in cases of neuromuscular disease or spinal cord injury.

"Nestin was a very well known molecule but no one knew what it did in vivo," says Lee, a professor in the Clayton Foundation Laboratories for Peptide Biology. "Ours is the first study to show that it actually has a physiological function."

Previously, researchers knew that as the neuromuscular junction formed in a developing embryo, so-called positive factors cemented connections between incoming nerve fibers and dense clusters of neurotransmitter receptors facing them on muscle fibers. However, in a 2005 Neuron paper Lee defined a counterbalancing factor--the protein cdk5--that whisked away, or dispersed, superfluous muscle receptors lying outside the contact zone, or synapse, so only the most efficient connections were maintained.

The current study addresses how cdk5, which catalytically adds chemical phosphate groups to target proteins, eliminates useless "extrasynaptic" connections. Reasoning that cdk5 must act by chemically modifying a second protein, Jiefei Yang, PhD., a post-doctoral fellow in the Lee lab and the current study's first author, took on the task of finding its accomplice.

He began by eliminating prime suspects in the plethora of proteins found on the muscle side of the synapse. "At the beginning it was like shooting in the dark because cdk5 has so many potential targets at the neuromuscular junction," says Yang. After eliminating the obvious candidates, the team finally considered nestin, based on evidence that cdk5 can phosphorylate nestin in some tissues.

To analyze nestin, the group employed mice in which the positive, synapse-stabilizing factor--known as agrin--had been genetically eliminated. As predicted, microscopic examination of diaphragm muscle tissue in agrin mutant mice showed a complete loss of dense receptor clusters that would mark a mature synapse, meaning that without the agrin "cement," synapse-dispersing activity had swept away the clusters.

However, when agrin mutant mice were administered an RNA reagent that literally knocks out nestin expression, the group made a dramatic finding: the pattern of receptor clusters on diaphragm muscle reappeared, reminiscent of synapses of a normal mouse--meaning that getting rid of nestin allows synapses to proceed even in the absence of the stabilizing glue.

"This in vivo experiment represents a critical genetic finding," explains Lee. "Later, we determined that nestin's basic function is to recruit cdk5 and its co-activators to the muscle membrane, leading to cdk5 activation and initiating the dispersion process." Additional experiments confirmed that nestin is expressed on the muscle side of the neuromuscular junction, in other words, in the "right" place, and that nestin phosphorylation is required for its newfound function.

Lee believes that information revealed by the study could enhance development of tissue replacement therapies. "Currently, in efforts to devise therapies for motor neuron disease or spinal cord injury there is a lot of focus is on how to make neurons survive," he says. "That is important, but we also need to know how to properly form a synapse. If we cannot, the neuromuscular junction won't function correctly."

Yang, who studied animal models of motor neuron disease while a graduate student at USC, agrees. "One long-term goal of this study is to identify ways to inhibit cdk5/nestin," he says. "That could slow synapse deterioration in neuromuscular junction diseases, such as ALS (Lou Gehrig's Disease) or spinal motor atrophy, in which you have an imbalance of positive and negative signals. One approach is to boost positive signaling, but another is to inhibit negative signaling in an effort to slow disease progression."

Other authors of the study include Bertha Dominguez, Fred de Winter, and Thomas Gould in the Lee lab, and John Eriksson at Åbo Akademi University in Turku, Finland.

Support for the work came from the National Institutes of Health, the Muscular Dystrophy Association, and the Research Institute of the Åbo Akademi University.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>