Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers scientists discover molecules that show promise for new anti-flu medicines

Chemicals block ability of flu virus to replicate in cells; goal is to develop medicines that fight much-feared pandemic influenzas

A new way to attack flu viruses is taking shape in laboratories at Rutgers University, where scientists have identified chemical agents that block the virus's ability to replicate itself in cell culture.

A chemical compound binds to and inhibits the active site of an enzyme that the influenza virus uses during replication.

Credit: Joseph D. Bauman

These novel compounds show promise for a new class of antiviral medicines to fight much-feared pandemic influenzas such as the looming "bird flu" threats caused by the H5N1 influenza A virus and the new H7N9 virus responsible for a 2013 outbreak in China.

Timely production of a vaccine is difficult when a pandemic flu strikes. A viable alternative is to treat with drugs.

"Right now there's really only one effective oral drug for treating influenza," said Eddy Arnold, professor of chemistry and chemical biology in the School of Arts and Sciences at Rutgers and a member of the Center for Advanced Biotechnology and Medicine. And just as bacteria develop resistance to antibiotics, Arnold notes that some flu strains have developed resistance to Tamiflu, the sole orally available anti-flu drug.

Arnold and his collaborators have been working to create drugs beyond Tamiflu, especially ones that target different parts of the virus, using an approach that helped in the development of powerful anti-AIDS drugs. By synthesizing chemical compounds that bind to metal ions in a viral enzyme, the researchers found they could halt that enzyme's ability to activate a key step in the virus's replication process.

In Arnold's words, his team's compounds "really gum up" the targeted enzyme of influenza virus.

"We're at a key proof of principle stage right now," he said. "It's not trivial to go from this point to actually delivering a drug, but we're optimistic – this class of inhibitors has all the right characteristics."

Rutgers' search for these binding compounds relies on technology that reveals the structure of this enzyme in extremely fine detail. Researchers Joseph Bauman and Kalyan Das first produced high-resolution images of an H1N1 flu enzyme, and Bauman and postdoctoral researcher Disha Patel screened 800 small molecule fragments for binding.

The researchers in Arnold's lab worked with Edmond LaVoie, professor and chair of medicinal chemistry in the Ernest Mario School of Pharmacy, to modify those compounds, making them more potent and selective in blocking the flu enzyme's activity. Working with virologist Luis Martinez-Sobrido at the University of Rochester, they were able to detect antiviral activity of the compounds in cells.

The enzyme that the scientists are attacking is especially crafty, Arnold noted, because it steals material from human cells to disguise the invading flu virus in a process called "cap-snatching." These "caps" are a small chemical structure that prime the process for reading genetic information."What we're doing by blocking or inhibiting this enzyme is to interefere with flu's ability to disguise itself," he said.

Arnold cited research by universities and pharmaceutical companies nearly two decades ago that took this approach, but initially the technology to obtain high-resolution images of the influenza protein wasn't available. One pharmaceutical company, Merck, later applied the approach of targeting metal-ion containing active sites in the HIV enzyme integrase and developed a highly successful anti-AIDS drug.

"It's truly remarkable what they did, and we're trying to pursue similar logic with influenza," said Arnold.

The researchers have recently published their findings in the American Chemical Society journal ACS Chemical Biology. Some of the work was funded by the National Institutes of Health. Two additional publications in the journals Bioorganic Medicinal Chemistry and ACS Medicinal Chemistry Letters have described LaVoie's synthetic medicinal chemistry used to make the new anti-flu agents and the observed structure-activity relationships.

Carl Blesch | EurekAlert!
Further information:

Further reports about: ACS Rutgers Tamiflu chemical engineering flu virus high-resolution image human cell

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>