Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-interference pesticides will need special safety testing

16.07.2013
A new technology for creating pesticides and pest-resistant crops could have effects on beneficial species that current toxicity testing will miss

Standard toxicity testing is inadequate to assess the safety of a new technology with potential for creating pesticides and genetically modifying crops, according to a Forum article published in the August issue of BioScience.

The authors of the article, Jonathan G. Lundgren and Jian J. Duan of the USDA Agricultural Research Service, argue that pesticides and insect-resistant crops based on RNA interference, now in exploratory development, may have to be tested under elaborate procedures that assess effects on animals' whole life cycles, rather than by methods that look for short-term toxicity.

RNA interference is a natural process that affects the level of activity of genes in animals and plants. Agricultural scientists have, however, successfully devised artificial "interfering RNAs" that target genes in insect pests, slowing their growth or killing them. The hope is that interfering RNAs might be applied to crops, or that crops might be genetically engineered to make interfering RNAs harmful to their pests, thus increasing crop yields.

The safety concern, as with other types of genetic modification and with pesticides generally, is that the artificial interfering RNAs will also harm desirable insects or other animals. And the way interfering RNA works means that simply testing for lethality might not detect important damaging effects. For example, an interfering RNA might have the unintended effect of suppressing the action of a gene needed for reproduction in a beneficial species. Standard laboratory testing would detect no harm, but there could be ecological disruption in fields because of the effects on reproduction.

Lundgren and Duan suggest that researchers investigating the potential of interference RNA pesticides create types that are designed to be unlikely to affect non-target species. They also suggest a research program to evaluate how the chemicals move in real-life situations. If such steps are taken, Lundgren and Duan are optimistic that the "flexibility, adaptability, and demonstrated effectiveness" of RNA interference technology mean it will have "an important place in the future of pest management."

BioScience, published monthly, is the journal of the American Institute of Biological Sciences (AIBS; http://www.aibs.org). BioScience is a forum for integrating the life sciences that publishes commentary and peer-reviewed articles. The journal has been published since 1964. AIBS is a meta-level organization for professional scientific societies and organizations that are involved with biology. It represents nearly 160 member societies and organizations. The article by Lundgren and Duan can be accessed ahead of print as an uncorrected proof at http://www.aibs.org/bioscience-press-releases/ until early August.

The complete list of peer-reviewed articles in the August 2013 issue of BioScience is as follows. These are now published ahead of print.

Improving Ocean Management through the Use of Ecological Principles and Integrated Ecosystem Assessments.

Melissa M. Foley, Matthew H. Armsby, Erin E. Prahler, Margaret R. Caldwell, Ashley L. Erickson, John N. Kittinger, Larry B. Crowder, and Phillip S. Levin

How Far Are Stem-Cell-derived Erythrocytes from the Clinical Arena?
Xiaolei Li, Zhiqiang Wu, Xiaobing Fu, and Weidong Han
Invasive Plants in Wildlife Refuges: Coordinated Research with Undergraduate Ecology Courses.

Martha F. Hoopes, David M. Marsh, Karen H. Beard, Nisse Goldberg, Alberto Aparicio, Annie Arbuthnot, Benjamin Hixon, Danelle Laflower, Lucas Lee, Amanda Little, Emily Mooney, April Pallette, Alison Ravenscraft, Steven Scheele, Kyle Stowe, Colin Sykes, Robert Watson, and Blia Yang

RNAi-based Insecticidal Crops: Potential Effects on Nontarget Species.
Jonathan G. Lundgren and Jian J. Duan
Expert Opinion on Climate Change and Threats to Biodiversity.
Debra Javeline, Jessica J. Hellmann, Rodrigo Castro Cornejo, and Gregory Shufeldt
Discovering Ecologically Relevant Knowledge from Published Studies through Geosemantic Searching.

Jason W. Karl, Jeffrey E. Herrick, Robert S. Unnasch, Jeffrey K. Gillan, Erle C. Ellis, Wayne G. Lutters, and Laura J. Martin

Tim Beardsley | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>