Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revisiting the need to detect circulating tumor cells

17.03.2010
One of the most dangerous characteristics of cancer is its ability to metastasize, or spread through the body. For this reason, oncologists have a major need for better tests to detect cells that break away from primary tumors to travel to other parts of the body.

Effective identification of these cells, referred to as circulating tumor cells (CTC's), could help guide treatment and improve quality of life for many cancer patients. A commentary in the March 17 issue of the Journal of the American Medical Association assesses the existing technology available to detect these cells and points to the need for still more progress in this area.

"The topic of circulating tumor cells has become more and more important as our knowledge of cancer and, in particular, breast cancer has evolved and as the technology to detect these cells has improved," says Massimo Cristofanilli, M.D., F.A.C.P., chair of the department of medical oncology at Fox Chase Cancer Center and lead author of the commentary. "But even though progress has been made, we need even better capabilities to detect these cells, which can tell us so much about the course of a patient's cancer."

Currently there is only one standardized and validated test approved by the U.S. Food and Drug Administration for the detection of CTC's, called the CellSearchTM system. CellSearch is a simple blood test that captures and assesses CTC's to determine the prognosis of patients with metastatic breast, colorectal, or prostate cancer at any time. This test, however, is only able to count CTC's and therefore additional technologies are being explored to capture more cells, different populations of the cells, and the gene expression patterns of the cells.

"It's important for us to look at all of these technologies in a more critical way to see which technologies are best at distinguishing between cells that have simply been shed by the tumor and those that are, instead demonstrating more aggressive," says Cristofanilli.

Using technologies that complement one another may also help improve the process of detecting these cells and design more personalized therapies. "For example, with inflammatory breast cancer we know that one technology alone will not help in detecting these cells," says Cristofanilli. "This doesn't mean they aren't there, it just means we aren't able to see them. It's like using a camera—by using full color, rather than black and white, you're able to see more distinct details."

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's web site at www.fccc.edu or call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Cancer breast cancer circulating tumor cells tumor cells

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>