Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant against the flu

06.12.2013
A genetic defect protects mice from infection with influenza viruses

A new study published in the scientific journal PLOS Pathogens points out that mice lacking a protein called Tmprss2 are no longer affected by certain flu viruses.


Influenza virus, magnified by electron microscopy. © HZI / Rohde

The discovery was made by researchers from the Helmholtz Centre for Infection Research (HZI) in Braunschweig in collaboration with colleagues from Göttingen and Seattle.

Whether it is H1N1, H5N1 or H7N9: The flu virus influenza A exists in many different types as its two coating proteins haemagglutinin (HA) and neuraminidase (NA) can be combined in various ways. Theoretically, more than 100 different pairings are possible. Additionally, the coating proteins themselves can undergo changes. This variability is one of the reasons why the flu vaccination has to be renewed every year.

The virus uses haemagglutinin as a key to enter the host cell which is then captured to build new virus particles. To reach its final shape, the coating protein has to be cleaved by a molecular scissor. This is done by an enzyme of the infected host. Otherwise, the protein is not functional and the virus particles are not infectious. A variety of host enzymes, so-called proteases, that process the haemagglutinin have been identified using cell cultures.

Scientists from the HZI have now been able to show how important those enzymes are for the progression of the infection. Mice with a mutation in the gene for the protease Tmprss2 do not become infected by flu viruses containing haemagglutinin type H1. They are resistant against H1N1, the pathogen responsible for seasonal influenza epidemics, the “swine flu” and the “Spanish flu”, which caused an epidemic in 1918. “These mice do not lose weight and their lungs are almost not impacted,” says Professor Klaus Schughart, head of the Department “Infection Genetics” at the HZI. “Even though the virus still multiplies no active viral particles are formed which would infect the neighbouring cells.” The infection is quickly terminated.

As the protease Tmprss2 is a host factor it is an ideal intervention point for new drugs. So far, treatments, such as the well-known Tamiflu, attack parts of the virus. They have decisive disadvantages: The virus can become resistant and the therapy no longer takes effect. This problem does not occur when the medication intervenes with the metabolism of the patient. Furthermore, the mice Schughart and his team examined did not show any abnormalities. “We did not observe an obvious varied phenotype in these mice. They were neither impaired in their behaviour nor in their life expectancy. Presumably because other proteins are compensating for the lack of Tmprss2,” says Dr Bastian Hatesuer, one of the scientists involved in the project. Blocking TMPRSS2 for a short period could be a new therapeutic option as no strong side effects are expected.

Even though a drug like this is still a long way off, the observation is important for another reason: “Until now the dependence of virus production on proteases had only be demonstrated in cell cultures,” says Schughart. “We are the first to show this in a living organism.”

It is likely that there are humans having the same defect as the mice and who therefore may be resistant against specific flu viruses. This, however, remains unnoticed. “Because they don’t get sick, they don’t go to see a doctor,” says Hatesuer. “Thus, they don’t know that they are resistant.”

Original publication:
Bastian Hatesuer, Stephanie Bertram, Nora Mehnert, Mahmoud M. Bahgat, Peter S. Nelson, Stefan Pöhlman, Klaus Schughart
TMPRSS2 is essential for influenza H1N1 virus pathogenesis in mice
PLOS Pathogens, 2013, DOI: 10.1371/journal.ppat.1003774
Scientists of HZI’s “Infection Genetics“ department are studying how the genes of a host influence its defense against an infection with influenza A virus.
The Helmholtz Centre for Infection Research
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/resistant_against_the_flu/

- This release on helmholtz-hzi.de

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1003774
- Link to the original publication
--------------------------------------------------------------------------------
Merkmale dieser Pressemitteilung:

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de

Further reports about: H1N1 HZI Helmholtz Infection cell cultures flu virus pathogens resistant

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>