Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant against the flu

06.12.2013
A genetic defect protects mice from infection with influenza viruses

A new study published in the scientific journal PLOS Pathogens points out that mice lacking a protein called Tmprss2 are no longer affected by certain flu viruses.


Influenza virus, magnified by electron microscopy. © HZI / Rohde

The discovery was made by researchers from the Helmholtz Centre for Infection Research (HZI) in Braunschweig in collaboration with colleagues from Göttingen and Seattle.

Whether it is H1N1, H5N1 or H7N9: The flu virus influenza A exists in many different types as its two coating proteins haemagglutinin (HA) and neuraminidase (NA) can be combined in various ways. Theoretically, more than 100 different pairings are possible. Additionally, the coating proteins themselves can undergo changes. This variability is one of the reasons why the flu vaccination has to be renewed every year.

The virus uses haemagglutinin as a key to enter the host cell which is then captured to build new virus particles. To reach its final shape, the coating protein has to be cleaved by a molecular scissor. This is done by an enzyme of the infected host. Otherwise, the protein is not functional and the virus particles are not infectious. A variety of host enzymes, so-called proteases, that process the haemagglutinin have been identified using cell cultures.

Scientists from the HZI have now been able to show how important those enzymes are for the progression of the infection. Mice with a mutation in the gene for the protease Tmprss2 do not become infected by flu viruses containing haemagglutinin type H1. They are resistant against H1N1, the pathogen responsible for seasonal influenza epidemics, the “swine flu” and the “Spanish flu”, which caused an epidemic in 1918. “These mice do not lose weight and their lungs are almost not impacted,” says Professor Klaus Schughart, head of the Department “Infection Genetics” at the HZI. “Even though the virus still multiplies no active viral particles are formed which would infect the neighbouring cells.” The infection is quickly terminated.

As the protease Tmprss2 is a host factor it is an ideal intervention point for new drugs. So far, treatments, such as the well-known Tamiflu, attack parts of the virus. They have decisive disadvantages: The virus can become resistant and the therapy no longer takes effect. This problem does not occur when the medication intervenes with the metabolism of the patient. Furthermore, the mice Schughart and his team examined did not show any abnormalities. “We did not observe an obvious varied phenotype in these mice. They were neither impaired in their behaviour nor in their life expectancy. Presumably because other proteins are compensating for the lack of Tmprss2,” says Dr Bastian Hatesuer, one of the scientists involved in the project. Blocking TMPRSS2 for a short period could be a new therapeutic option as no strong side effects are expected.

Even though a drug like this is still a long way off, the observation is important for another reason: “Until now the dependence of virus production on proteases had only be demonstrated in cell cultures,” says Schughart. “We are the first to show this in a living organism.”

It is likely that there are humans having the same defect as the mice and who therefore may be resistant against specific flu viruses. This, however, remains unnoticed. “Because they don’t get sick, they don’t go to see a doctor,” says Hatesuer. “Thus, they don’t know that they are resistant.”

Original publication:
Bastian Hatesuer, Stephanie Bertram, Nora Mehnert, Mahmoud M. Bahgat, Peter S. Nelson, Stefan Pöhlman, Klaus Schughart
TMPRSS2 is essential for influenza H1N1 virus pathogenesis in mice
PLOS Pathogens, 2013, DOI: 10.1371/journal.ppat.1003774
Scientists of HZI’s “Infection Genetics“ department are studying how the genes of a host influence its defense against an infection with influenza A virus.
The Helmholtz Centre for Infection Research
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/resistant_against_the_flu/

- This release on helmholtz-hzi.de

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1003774
- Link to the original publication
--------------------------------------------------------------------------------
Merkmale dieser Pressemitteilung:

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de

Further reports about: H1N1 HZI Helmholtz Infection cell cultures flu virus pathogens resistant

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>