Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible link between bacterium and colon cancer

18.10.2011
Scientists at Dana-Farber Cancer Institute and the Broad Institute have found strikingly high levels of a bacterium in colorectal cancers, a sign that it might contribute to the disease and potentially be a key to diagnosing, preventing, and treating it.

In a study published online in the journal Genome Research, investigators report the discovery of an abnormally large number of Fusobacterium cells in nine colorectal tumor samples. While the spike does not necessarily mean the bacterium helps cause colorectal cancer, it offers an enticing lead for further research, the study authors say.

The journal is also publishing a paper by researchers from the BC Cancer Agency and Simon Fraser University in Canada that reports similar findings from research conducted independently of the Dana-Farber/Broad Institute collaboration.

A confirmed connection between Fusobacterium and the onset of colorectal cancer would mark the first time any microorganism has been found to play a role in this type of cancer, which is the second leading cause of cancer deaths in the United States. The American Cancer Society estimates that colon cancer will cause more than 49,000 deaths in the U.S. this year, and more than 141,000 people will be diagnosed with the disease.

The discovery was made by sequencing the DNA within nine samples of normal colon tissue and nine of colorectal cancer tissue, and validated by sequencing 95 paired DNA samples from normal colon tissue and colon cancer tissue. Analysis of the data turned up unusually large amounts of Fusobacterium's signature DNA in the tumor tissue.

"Tumors and their surroundings contain complex mixtures of cancer cells, normal cells, and a variety of microorganisms such as bacteria and viruses," says the study's senior author, Matthew Meyerson, MD, PhD, of Dana-Farber and the Broad Institute. "Over the past decade, there has been an increasing focus on the relationship between cancer cells and their 'microenvironment,' specifically on the cell-to-cell interactions that may promote cancer formation and growth."

While the relationship – if any – between colorectal cancer and Fusobacterium is unclear, there are intriguing hints that the bacterium may play a role in the cancer, says Meyerson, who is co-director of the Center for Cancer Genome Discovery at Dana-Farber and a professor of pathology at Harvard Medical School. Previous studies have suggested that Fusobacterium is associated with inflammatory bowel diseases such as ulcerative colitis, which can raise people's risk of developing colon cancer.

"At this point, we don't know what the connection between Fusobacterium and colon cancer might be," Meyerson observes. "It may be that the bacterium is essential for cancer growth, or that cancer simply provides a hospitable environment for the bacterium. Further research is needed to see what the link is."

Researchers are embarking on comparison studies of Fusobacterium levels in larger numbers of patients with colorectal cancer and in those without the disease. Also planned are studies to determine whether the bacterium can be used to induce colon cancer in animal models.

The study's lead author is Aleksandar Kostic of the Broad Institute. Co-authors include Dirk Gevers, PhD, Ashlee Earl, PhD, Joonil Jung, PhD, and Bruce Birren, PhD, Broad Institute; Chandra Sekhar Pedamallu, PhD, Fujiko Duke, Akinyemi Ojesina, MD, PhD, and Adam Bass, MD, Dana-Farber and the Broad Institute; Ramesh Shivdasani, MD, PhD, Dana-Farber; Wendy Garrett, MD, PhD, Dana-Farber, Broad Institute, and Harvard School of Public Health; Curtis Huttenhower, PhD, Broad Institute and Harvard School of Public Health; Monia Michaud, MS, Harvard School of Public Health; Josep Tabernero, MD, and Jose Baselga, MD, Vall d'Hebron University Hospital, Barcelona, Spain; Chen Liu, MD, PhD, University of Florida College of Medicine; and Shuji Ogino, MD, PhD, Harvard Medical School, Dana-Farber, and Harvard School of Public Health.

The study was supported by grants from the National Human Genome Research Institute, the National Cancer Institute, and the Starr Cancer Consortium.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

The Eli and Edythe L. Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

EDITOR'S NOTE: A video of this story is also available online at: http://resources.dana-farber.org/pr/media/

Anne Doerr/Rob Levy | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>