Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how DHA omega-3 fatty acid reaches the brain

15.05.2014

It is widely believed that DHA (docosahexaenoic acid) is good for your brain, but how it is absorbed by the brain has been unknown. That is - until now.

Researchers from Duke-NUS Graduate Medical School Singapore (Duke-NUS) have conducted a new study identifying that the transporter protein Mfsd2a carries DHA to the brain. Their findings have widespread implications for how DHA functions in human nutrition.


Omega-3 fatty acid DHA transporter protein Mfsd2a is shown here as red fluorescence along mouse brain capillaries.

Credit: Long N. Nguyen

People know that DHA is an essential dietary nutrient that they can get from seafood and marine oils. Baby formula companies are especially attuned to the benefits of DHA, with nary a baby formula marketed without it.

DHA is an omega-3 fatty acid most abundantly found in the brain that is thought to be crucial to its function. However, the brain does not produce DHA. Instead, DHA uptake in the brain happens in two ways. The developing brain receives DHA during fetal development, from a mother to her baby. The adult brain gets it through food or DHA produced by the liver.

Though DHA is postulated to benefit the brain, the mechanics of how the brain absorbs the fatty acid has remained elusive. Senior author of the research, Associate Professor David L. Silver of Duke-NUS explained the importance of unlocking this mystery.

"If we could show the link by determining how DHA gets into the brain, then we could use this information to more effectively target its absorption and formulate an improved nutritional agent."

In the study, led by post-doctoral fellow Long N. Nguyen of Duke-NUS, researchers found that mice without the Mfsd2a transporter had brains a third smaller than those with the transporter, and exhibited memory and learning deficits and high levels of anxiety. The team recognized that the learning, memory and behavioral function of these mice were reminiscent of omega-3 fatty acid deficiency in mice starved of DHA in their diet.

Then, using biochemical approaches, the team discovered that mice without Mfsd2a were deficient in DHA and made the surprising discovery that Mfds2a transports DHA in the chemical form of lysophosphatidlycholine (LPC). LPCs are phospholipids mainly produced by the liver that circulate in human blood at high levels. This is an especially significant finding as LPCs have been considered toxic to cells and their role in the body remains poorly understood. Based on this surprising new information, Dr Silver's team showed that Mfsd2a is the major pathway for the uptake of DHA carried in the chemical form of LPCs by the growing fetal brain and by adult brain.

The findings, published online in Nature the week of May 12, 2014 marks the first time a genetic model for brain DHA deficiency and its functions in the brain has been made available.

"Our findings can help guide the development of technologies to more effectively incorporate DHA into food and exploit this pathway to maximize the potential for improved nutritionals to improve brain growth and function. This is especially important for pre-term babies who would not have received sufficient DHA during fetal development," said Dr Silver, who is from the Cardiovascular and Metabolic Disorders Program at Duke-NUS.

###

In addition to Dr. Silver and Dr. Nguyen, study authors include Dr. Dongliang Ma, Dr. Peiyan Wong, Assistant Professor Xiaodong Zhang and Assistant Professor Eyleen Goh from Duke-NUS and Dr. Guanghou Shui, Dr. Amaury Cazenave Gassiot and Associate Professor Markus Wenk from the Yong Loo Lin School of Medicine, National University of Singapore. Part of the research was carried out by Dr Wenk and a group of researchers at the Singapore Lipidomics Incubator (SLING).

This research is supported by the Singapore National Research Foundation under its Cooperative Basic Research Grant (CBRG) and administered by the Singapore Ministry of Health's National Medical Research Council.

Dharshini Subbiah | Eurek Alert!
Further information:
http://www.duke-nus.edu.sg

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>