Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover genes involved in colorectal cancer

07.11.2011
A jumping gene named Sleeping Beauty plays vital role in investigating cancer pathway

A jumping gene with the fairy tale name "Sleeping Beauty" has helped to unlock vital clues for researchers investigating the genetics of colorectal cancer.

A study published today used the Sleeping Beauty transposon system to profile the repertoire of genes that can drive colorectal cancer, identifying many more than previously thought. Around one third of these genes are mutated in human cancer, which provides strong evidence that they are driver mutations in human tumours.

The collaborative project funded by Cancer Research UK and the Wellcome Trust was led by Dr David Adams from the Wellcome Trust Sanger Institute, and Dr Douglas Winton, of the Cancer Research-UK Cambridge Research Institute.

"These findings, when combined with mutation data from human colon cancers, will drive forward our understanding of the processes that lead to colorectal cancer," says Dr Adams, senior author from the Sanger Institute. "They demonstrate how many genes can contribute to this cancer and how these genes work together in the development of this disease".

The Sleeping Beauty transposon system induces genetic mutations at random, identifying and tagging candidate cancer genes, the drivers that cause colorectal cancer. This system has become critical in uncovering the genetic pathways that cause cancer, and, in this study, the team identify more than 200 genes that can be disrupted in human colorectal cancers.

Colorectal (bowel) cancer is the third most common cancer in the UK, and the second most common cause of cancer deaths after lung cancer; just under 40,000 people were diagnosed with bowel cancer in the UK in 2008 – around 110 people every day – a figure which has shown little improvement over the last decade.

"Our research provides a rich source of candidate genes that represent potential diagnostic, prognostic and therapeutic targets, and defines the breadth of genes that can contribute to cancer of the intestine," says Dr Winton, senior author from the Cancer Research UK Cambridge Research Institute. "It is becoming increasingly clear that cancers are driven by mutations in disparate collections of genes and it is essential that we tease apart the important changes."

Current thinking is that perhaps around 50 major drivers are mutated in any one cancer cell, but the number and identity of all of the cancer drivers, and how many drivers are found in each type of cancer, is largely unknown. By performing screens for cancer genes in the mouse and by then comparing them to data from human tumours the team identified a rich catalogue of new candidate genes helping to refine the genes that genetic pathways that drive bowel cancer development.

"At its heart, cancer is a disease driven by faulty genes," says Dr Lesley Walker, director of cancer information at Cancer Research UK. "Research suggests that each cancer cell has a number of 'driver' faults that make them grow out of control, as well as 'passenger' faults that they pick up as the disease develops. This technique is helping us to tease out the key drivers of bowel cancer, laying the foundations for more effective, targeted treatments for the disease in the future."

The research complements studies by The Cancer Genome Atlas and the International Cancer Genome Consortium, which are cataloguing the mutations responsible for cancer development using next generation DNA sequencing.

Publication details

March HN et al. (2011) Insertional mutagenesis reveals multiple networks of co-operating genes driving intestinal tumorigenesis. Nature Genetics, published online on Sunday 6 November 2011

doi: 10.1038/ng.990

Particpating Centres

Cancer Research-UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
Histopathology Unit, London Research Institute, Cancer Research UK, London, UK
Netherlands Cancer Institute, Amsterdam, the Netherlands
Delft Bioinformatics Laboratory, Delft University of Technology, Delft, the Netherlands
Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK

Funding

This work was funded by Cancer Research UK, the Wellcome Trust, the Kay Kendall Leukemia Fund, the NWO Genomics program and the Netherlands Genomics Initiative.

About Cancer Research UK

Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research
The charity's groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.
Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last forty years.
Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
Together with its partners and supporters, Cancer Research UK's vision is to beat cancer.

For further information about Cancer Research UK's work or to find out how to support the charity, please call 020 7121 6699 or visit http://www.cancerresearchuk.org

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Contact details
Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel 44-1223-496-928
Mobile 44-7753-7753-97
Email press.office@sanger.ac.uk

Don Powell | EurekAlert!
Further information:
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>